leetcode 101. 对称二叉树 递归和迭代两种写法

给定一个二叉树,检查它是否是镜像对称的。

例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/ \
2 2
\ \
3 3

做法就是,判断 根左右遍历 和 根右左遍历 是否相同。注意用BFS获得每层的做法是不对的(话说我最开始想到的竟然是这个做法。)

首先是递归的做法,这个比较容易
代码如下:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool dfs(TreeNode* l,TreeNode* r){
        if(l == nullptr && r == nullptr)
            return true;
        if(l == nullptr && r != nullptr)
            return false;
        if(l != nullptr && r == nullptr)
            return false;
        if(l->val != r->val)    return false;
        else
            return dfs(l->left,r->right)&&dfs(l->right,r->left);
    }
    bool isSymmetric(TreeNode* root) {
        if(root == nullptr) return true;
        return dfs(root,root);
    }
};

迭代的做法,就是非递归的遍历方式,进行对比。
代码如下:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool dfs(TreeNode* l,TreeNode* r){
        if(l == nullptr && r == nullptr)
            return true;
        else if(l == nullptr && r != nullptr)
            return false;
        else if(l != nullptr && r == nullptr)
            return false;
        else if(l->val != r->val)
            return false;
        else{
            stack<TreeNode*> stl,str;
            while(!stl.empty() || l != nullptr){
                while(l != nullptr){
                    if(r == nullptr || l->val != r->val)
                        return false;
                    stl.push(l);
                    str.push(r);
                    l = l->left;
                    r = r->right;
                }
                //这里即使得到的l和r为空,下次依然会再次回到这里。
                if(!stl.empty()){
                    if(str.empty()) return false;
                    l = stl.top();
                    stl.pop();
                    l = l->right;
                    r = str.top();
                    str.pop();
                    r = r->left;
                }
            }
            if(!str.empty() || r != nullptr)    return false;
        }
        return true;
    }
    
    bool isSymmetric(TreeNode* root) {
        return dfs(root,root);
    }
};
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页