1、NoSQL数据库简介


Redis 6 入门到精通-讲师:王泽

世态炎凉,世界并不善良

1、NoSQL数据库简介

1.1 技术发展

技术的分类
1、解决功能性的问题:Java、Jsp、RDBMS、Tomcat、HTML、Linux、JDBC、SVN
2、解决扩展性的问题:Struts、Spring、SpringMVC、Hibernate、Mybatis
3、解决性能的问题:NoSQL、Java线程、Hadoop、Nginx、MQ、ElasticSearch

1.1.1 Web1.0时代

Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。
在这里插入图片描述

1.1.2 Web2.0时代

随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。
在这里插入图片描述

1.1.3 解决CPU及内存压力

在这里插入图片描述

1.1.4 解决IO压力

在这里插入图片描述

1.2 NoSQL数据库

1.2.1 NoSQL数据库概述

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。

  • 不遵循SQL标准。
  • 不支持ACID。
  • 远超于SQL的性能。

1.2.2 NoSQL适用场景

  • 对数据高并发的读写
  • 海量数据的读写
  • 对数据高可扩展性的

1.2.3 NoSQL不适用场景

  • 需要事务支持
  • 基于sql的结构化查询存储,处理复杂的关系,需要即席查询。
  • (用不着sql的和用了sql也不行的情况,请考虑用NoSql)

1.2.4 Memcache

在这里插入图片描述

  • 很早出现的NoSql数据库
  • 数据都在内存中,一般不持久化
  • 支持简单的key-value模式,支持类型单一
  • 一般是作为缓存数据库辅助持久化的数据库

1.2.5 Redis

在这里插入图片描述

  • 几乎覆盖了Memcached的绝大部分功能
  • 数据都在内存中,支持持久化,主要用作备份恢复
  • 除了支持简单的key-value模式,还支持多种数据结构的存储,比如 list、set、hash、zset等。
  • 一般是作为缓存数据库辅助持久化的数据库

1.2.6 MongoDB

在这里插入图片描述

  • 高性能、开源、模式自由(schema free)的文档型数据库
  • 数据都在内存中, 如果内存不足,把不常用的数据保存到硬盘
  • 虽然是key-value模式,但是对value(尤其是json)提供了丰富的查询功能
  • 支持二进制数据及大型对象
  • 可以根据数据的特点替代RDBMS ,成为独立的数据库。或者配合RDBMS,存储特定的数据。

1.3 行式存储数据库(大数据时代)

1.3.1 行式数据库

在这里插入图片描述

1.3.2 列式数据库

在这里插入图片描述

1 Hbase

在这里插入图片描述
HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。

HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。

1 Cassandra[kəˈsændrə]

在这里插入图片描述
Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。

计算机存储单位 计算机存储单位一般用B,KB,MB,GB,TB,EB,ZB,YB,BB来表示,它们之间的关系是:
位 bit (比特)(Binary Digits):存放一位二进制数,即 0 或 1,最小的存储单位。
字节 byte:8个二进制位为一个字节(B),最常用的单位。
1KB (Kilobyte 千字节)=1024B,
1MB (Megabyte 兆字节 简称“兆”)=1024KB,
1GB (Gigabyte 吉字节 又称“千兆”)=1024MB,
1TB (Trillionbyte 万亿字节 太字节)=1024GB,其中1024=2^10 ( 2 的10次方),
1PB(Petabyte 千万亿字节 拍字节)=1024TB,
1EB(Exabyte 百亿亿字节 艾字节)=1024PB,
1ZB (Zettabyte 十万亿亿字节 泽字节)= 1024 EB,
1YB (Jottabyte 一亿亿亿字节 尧字节)= 1024 ZB,
1BB (Brontobyte 一千亿亿亿字节)= 1024 YB.
注:“兆”为百万级数量单位。

1.4 图关系型数据库

在这里插入图片描述
主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)
在这里插入图片描述

1.5 DB-Engines 数据库排名

http://db-engines.com/en/ranking
在这里插入图片描述

关系型数据库NoSQL数据库 什么是NoSQL 大家有没有听说过“NoSQL”呢?近年,这个词极受关注。看到“NoSQL”这个词,大家可能会误以为是“No!SQL”的缩写,并深感愤怒:“SQL怎么会没有必要了呢?”但实际上,它是“Not Only SQL”的缩写。它的意义是:适用关系型数据库的时候就使用关系型数据库,不适用的时候也没有必要非使用关系型数据库不可,可以考虑使用更加合适的数据存储。 为弥补关系型数据库的不足,各种各样的NoSQL数据库应运而生。 为了更好地了解本书所介绍的NoSQL数据库,对关系型数据库的理解是必不可少的。那么,就让我们先来看一看关系型数据库的历史、分类和特征吧。 关系型数据库简史 1969年,埃德加•弗兰克•科德(Edgar Frank Codd)发表了划时代的论文,首次提出了关系数据模型的概念。但可惜的是,刊登论文的《IBM Research Report》只是IBM公司的内部刊物,因此论文反响平平。1970年,他再次在刊物《Communication of the ACM》上发表了题为“A Relational Model of Data for Large Shared Data banks”(大型共享数据库的关系模型)的论文,终于引起了大家的关注。 科德所提出的关系数据模型的概念成为了现今关系型数据库的基础。当时的关系型数据库由于硬件性能低劣、处理速度过慢而迟迟没有得到实际应用。但之后随着硬件性能的提升,加之使用简单、性能优越等优点,关系型数据库得到了广泛的应用。 通用性及高性能 虽然本书是讲解NoSQL数据库的,但有一个重要的大前提,请大家一定不要误解。这个大前提就是“关系型数据库的性能绝对不低,它具有非常好的通用性和非常高的性能”。毫无疑问,对于绝大多数的应用来说它都是最有效的解决方案。 突出的优势 关系型数据库作为应用广泛的通用型数据库,它的突出优势主要有以下几点: 保持数据的一致性(事务处理) 由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处) 可以进行JOIN等复杂查询 存在很多实际成果和专业技术信息(成熟的技术) 这其中,能够保持数据的一致性是关系型数据库的最大优势。在需要严格保证数据一致性和处理完整性的情况下,用关系型数据库是肯定没有错的。但是有些情况不需要JOIN,对上述关系型数据库的优点也没有什么特别需要,这时似乎也就没有必要拘泥于关系型数据库了。 关系型数据库的不足 不擅长的处理 就像之前提到的那样,关系型数据库的性能非常高。但是它毕竟是一个通用型的数据库,并不能完全适应所有的用途。具体来说它并不擅长以下处理: 大量数据的写入处理 为有数据更新的表做索引或表结构(schema)变更 字段不固定时应用 对简单查询需要快速返回结果的处理 。。。。。。 NoSQL数据库 为了弥补关系型数据库的不足(特别是最近几年),NoSQL数据库出现了。关系型数据库应用广泛,能进行事务处理和JOIN等复杂处理。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。 易于数据的分散 如前所述,关系型数据库并不擅长大量数据的写入处理。原本关系型数据库就是以JOIN为前提的,就是说,各个数据之间存在关联是关系型数据库得名的主要原因。为了进行JOIN处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散。相反,NoSQL数据库原本就不支持JOIN处理,各个数据都是独立设计的,很容易把数据分散到多个服务器上。由于数据被分散到了多个服务器上,减少了每个服务器上的数据量,即使要进行大量数据的写入操作,处理起来也更加容易。同理,数据的读入操作当然也同样容易。 提升性能和增大规模 下面说一点题外话,如果想要使服务器能够轻松地处理更大量的数据,那么只有两个选择:一是提升性能,二是增大规模。下面我们来整理一下这两者的不同。 首先,提升性能指的就是通过提升现行服务器自身的性能来提高处理能力。这是非常简单的方法,程序方面也不需要进行变更,但需要一些费用。若要购买性能翻倍的服务器,需要花费的资金往往不只是原来的2倍,可能需要多达5到10倍。这种方法虽然简单,但是成本较高。 另一方面,增大规模指的是使用多台廉价的服务器来提高处理能力。它需要对程序进行变更,但由于使用廉价的服务器,可以控制成本。另外,以后只要依葫芦画瓢增加廉价服务器的数量就可以了。 不对大量数据进行处理的话就没有使用的必要吗? NoSQL数据库基本上来说为了“使大量数据的写入处理更加容易(让增加服务器数量更容易)”而设计的。但如果不是对大量数据进行操作的话,NoSQ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值