算法与数据结构

算法的概念

算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务,一般,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。

算法重要的是其的思想,而不是其所实现的某种语言,它是独立存在的一种解决问题的方法和思想。

算法的特性

输入:算法具有0个或多个输入

输出:算法至少有1个或多个输出

有穷性:算法在有限的步骤之后会自动结束,而不会无限循环,并且每一个步骤可以在可接受的时间内完成

确定性:算法中的每一步都有确定的含义,不会出现二义性

可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

算法的效率

执行时间反应算法效率,实现算法程序的执行时间可以反应出算法的效率,也就是算法的优劣

但是单纯的依靠运行时间来比较算法的优劣并不一定是客观准确的,程序的运行,还依靠了运行环境等客观条件,所以并不能单纯的从运行时间来分别算法的好坏。

时间复杂度

假定计算机执行算法每一个基本操作的时间是一个固定的时间单位,那么有多少个基本操作就代表会花费多少时间单位,即使对于不同的程序运行环境来说,确切的程序运行时间是不同的,但是对于算法运行所花费的时间单位的数量级是相同的,所以可以忽略机器环境的影响而客观的反应算法的时间效率。我们采用“大O记法来表示”

大O记法

“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。

时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n).

算法完成工作最少需要多少时间单位,就是最优时间复杂度

算法完成工作最多需要所少时间单位,就是最坏时间复杂度

算法完成工作平均需要多少基本操作,就是平均时间复杂度

时间复杂度的基本计算规则

基本操作,即只有常数项,认为其时间复杂度为O(1)

顺序结构,时间复杂度按加法进行计算

循环结构,时间复杂度按乘法进行计算

分支结构,时间复杂度取最大值

判断一个算法的效率时,往往只要关注操作数量的最高次项,其它次要项和常数项可以忽略

在没有特殊说明时,我们往往分析的算法时间复杂度是指最坏时间复杂度

常见时间复杂度


常见时间复杂度之间的关系

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)

数据结构

为了解决问题,将数据保存下来,然后根据数据的存储方式来设计算法实现进行处理,那么数据的存储方式不同就会导致需要不同的算法进行处理,我们希望算法解决问题的效率越快越好,所以就需要思考如何保存数据,这就是数据结构。换句话说,数据结构指数据对象中数据元素之间的关系。高效的程序需要在数据结构的基础上设计和选择算法。也可以说程序是数据结构和算法之和。

抽象数据类型(Abstract Data Type)

ADT的含义是指一个数据模型以及定义在此模型上的一组操作。即把数据类型和数据类型上的运算联合在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上的运算实现与这些数据类型和运算在程序中的引用隔开,使其相互独立。

最常用的数据运算类型有:插入、删除、修改、查找、排序


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值