机器学习(混淆矩阵)

本文深入探讨了机器学习中的重要概念——混淆矩阵,详细解释了它的构成和作用。通过介绍真正例、假正例、真负例和假负例这四种关键指标,帮助读者更好地评估分类模型的性能。
摘要由CSDN通过智能技术生成

1、混淆矩阵

    真实性
    Positive(1) Negative(0)
预测值 Poistive(1)

TP (true positive 11)

FP (false positive 01)

Negative(0) FN (false negaative 10) TN (true negative 00)

2、四种指标

  公式 意义
准确率ACC

Accuracy = (TP+TN) / (TP+TN+FP+FN)

                = (11+00) / (11+00+01+10)

分类模型中所有判断正确的结果占总观测值的比重
精准率PPV
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值