Spark源码解析:RDD

本文深入解析Spark中的核心概念RDD,介绍了RDD的基本概念、五个特征,包括分片、计算函数、依赖、分区器和优先计算位置。通过源码分析,详细探讨了RDD的窄依赖和宽依赖,并以WordCount为例,展示了RDD转换过程中的map、flatMap、filter和reduceByKey等操作。文章以HadoopRDD和MapPartitionsRDD的实现为切入点,逐步揭示RDD的内部工作机制。
摘要由CSDN通过智能技术生成

0x00 前言

本篇是Spark源码解析的第一篇,主要通过源码分析Spark设计中最重要的一个概念——RDD。

本文会主要讲解RDD的主要概念和源码中的设计,并通过一个例子详细地讲解RDD是如何生成的和转换的。

文章结构

  1. 先回顾一下RDD的一些特征以及几个基本概念
  2. RDD源码分析,整体的源码设计
  3. 举一个例子,通过这个例子来一步步地追踪源码。

0x01 概念

什么是RDD

RDD(Resilient Distributed Dataset):弹性分布式数据集。

我们可以先大致这样理解RDD:RDD是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组丰富的操作来处理这些数据。

注意:RDD作为数据结构,本质上是一个只读的分区记录集合。一个RDD可以包含多个分区,每个分区就是一个dataset片段。RDD可以相互依赖。

RDD的5个特征

下面是源码中对RDD类的注释:

Internally, each RDD is characterized by five main properties:

  • A list of partitions
  • A function for computing each split
  • A list of dependencies on other RDDs
  • Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
  • Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)

也是说RDD会有5个基本特征:

  1. 有一个分片列表。就是能被切分,和hadoop一样的,能够切分的数据才能并行计算。

  2. 有一个函数计算每一个分片,这里指的是下面会提到的compute函数。

  3. 对其他的RDD的依赖列表,依赖还具体分为宽依赖和窄依赖。

  4. 可选:key-value型的RDD是根据哈希来分区的,类似于mapreduce当中的Paritioner接口,控制key分到哪个reduce。

  5. 可选:每一个分片的优先计算位置(preferred locations),比如HDFS的block的所在位置应该是优先计算的位置。

宽窄依赖

这里有必要稍微解释一下窄依赖(narrow dependency)和宽依赖(wide dependency)。

如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为narrow dependency;若多个Child RDD分区都可以依赖,则称之为wide dependency。不同的操作依据其特性,可能会产生不同的依赖。

例如map操作会产生narrow dependency,而join操作则产生wide dependency。

如图,两种依赖的区别:

0x02 源码分析

RDD的5个特征会对应到源码中的4个方法和一个属性。

RDD.scala是一个总的抽象,不同的子类会对下面的方法进行定制化的实现。比如compute方法,不同的子类在实现的时候是不同的。 下面会对每一块单独分析。

  //该方法只会被调用一次。由子类实现,返回这个RDD的所有partition。
  protected def getPartitions: Array[Partition]
  //该方法只会被调用一次。计算该RDD和父RDD的依赖关系
  protected def getDependencies: Seq[Dependency[_]] = deps
  // 对分区进行计算,返回一个可遍历的结果
  def compute(split: Partition, context: TaskContext): Iterator[T]
  //可选的,指定优先位置,输入参数是split分片,输出结果是一组优先的节点位置
  protected def getPreferredLocations(split: Partition): Seq[String] = Nil
  //可选的,分区的方法,针对第4点,类似于mapreduce当中的Paritioner接口,控制key分到哪个reduce
  @transient val partitioner: Option[Partitioner] = None

举个栗子

官网最基本的wordcount例子。虽简单,但是代表性很强。

val textFile = sc.textFile("hdfs://...")
val counts = textFile.flatMap(line => line.split(" "))
                 .filter(_.length >= 2)
                 .map(word => (word, 1))
                 .reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")

这里涉及到了下面几个RDD转换:

  1. textFile是一个HadoopRDD经过map后的MapPartitionsRDD,
  2. 经过flatMap后仍然是一个MapPartitionsRDD,
  3. 经过filter方法之后生成了一个新的MapPartitionsRDD,
  4. 经过map函数之后,继续是一个MapPartitionsRDD,
  5. 最后经过reduceByKey变成了ShuffleRDD。

在正式看源码之前,上一个图。 这个图是整个流程中RDD的转换过程,这里先不讲解,后面看源码的时候如果有疑惑再回过头来看,就明白了。

1.

本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。Spark应用场景Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第6季。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值