Numpy

本文详细介绍了Numpy库中的基本操作,包括range、linspace和random的使用,数组的创建与数据访问,如何reshape数组以及利用-1自动计算形状。还探讨了数组的合并与分割,以及各种矩阵运算,如乘法、加法和矩阵的逆。此外,还讲解了聚合操作,如对数组和矩阵的聚合,排序,索引,以及Fancy Indexing。最后,讨论了numpy.array的比较方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NUMPY

查询文档:np.random.normal? help(np.random.normal)

nparr = np.array([i for i in range(10)])
np.zeros(shape=(3,5),dtype=int)
np.ones()
Np.full(shape = (3,5) , full_value = 6.0)
range
[i for i in range( 0 , 20 , 2 )] // [0,20),步长为2
np.arange(0,10)
linspace
Np.linspace( 0, 20,  10) // [0,20] 选10个点(等差)    
random
np.random.randint(0,10) //生成一个【010)的0-10的随机数
np.random.randint(0,10,size = 10) //生成10个【010)的0-10的随机数
np.random.randint(4,8,size=(3,5)) //生成35列
np.random.seed(666) //设置随机种子(每次生成一样的随机数)
np.random.random(10) //[0,1)间10个随机数
np.random.random((3,5)) //35列
np.random.normal() //均值为0,方差为1的随机数
np.random.normal(10,100,(3,5)) //均值为10,方差为10035列
np.random.uniform(0.0, 100.0, size=n+1) // 均匀分布 0100随机生成

numpy.array

x = np.arange(15) // 014排列
X = np.arange(15).reshape(3,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值