Pytorch入门实战(5):基于nn.Transformer实现机器翻译(英译汉)

Transformer是一种模型体系结构,它完全依赖于注意力机制来绘制输入和输出之间的全局依赖关系,从而避免了重复。\[1\]在机器翻译任务中,Transformer模型可以实现更高的并行化,并且在经过12个小时的训练后,可以达到翻译质量的新水平。\[1\]在训练过程中,可以使用CWMT数据集中的中文英文数据作为训练语料,该数据集质量较高,非常适合用于训练Transformer机器翻译模型。\[2\]如果你想在PaddlePaddle中使用Transformer模型,可以调用PaddleNLP提供的Transformer API,例如paddlenlp.transformers.TransformerModel用于实现Transformer模型,paddlenlp.transformers.InferTransformerModel用于生成翻译结果,paddlenlp.transformers.CrossEntropyCriterion用于计算交叉熵损失,paddlenlp.transformers.position_encoding_init用于初始化Transformer位置编码等。\[3\] #### 引用[.reference_title] - *1* [Transformer翻译](https://blog.csdn.net/qq_39223444/article/details/121337530)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [基于Transformer的中英文翻译](https://blog.csdn.net/m0_63642362/article/details/121725145)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 72
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值