- 博客(28)
- 收藏
- 关注
原创 KAN 学习 Day4 —— MultKAN 正向传播代码解读及测试
'''Args:-----inputsReturns:--------NoneExample1--------Example2--------'''x: 2D,输入数据。: bool,默认为False。如果为True,则在符号分支中避免奇异点。y_th: float,默认为10.。用于判断是否避免奇异点的阈值。None:方法执行后不返回任何值今天内容主要包括MultKAN网络的初始化、正向传播方法实现、训练方法参数说明。
2024-09-09 17:08:42 1517 1
原创 KAN 学习 Day3 —— KANLayer.py 与 Symbolic_KANLayer.py 代码解读及测试
KANLayer的类,用于构建和操作一种特殊的神经网络层,该层使用分段多项式(B-spline)基函数和残差函数来实现非线性变换。KANLayer初始化参数:初始化函数接受多个参数,包括输入维度、输出维度、网格间隔数、多项式阶数、噪声尺度、基函数参数、网格范围、网格更新策略等。网格生成:生成一个等间距的网格,用于定义B-spline基函数的节点。网格的间距可以通过grid_eps参数进行调整,以在均匀网格和基于样本的非均匀网格之间进行平衡。系数初始化。
2024-09-06 01:26:22 1524
原创 KAN 学习 Day2 —— utils.py 与 spline.py 代码解读及测试
utils.py 包含了一系列用于处理符号函数、生成数据集、拟合参数、创建稀疏掩码、添加符号函数到库、四舍五入表达式、增强输入、计算模型参数的Jacobian和Hessian矩阵,以及从数据中创建训练和测试数据集的功能。符号函数处理f_invf_inv2f_inv3f_inv4f_inv5f_sqrtf_power1d5f_invsqrtf_logf_tanf_arctanhf_arcsinf_arccosf_exp:这些函数是用于处理不同数学操作的lambda函数,它们通常用于在符号计算中生成表达式。
2024-09-03 19:59:03 1719 1
原创 KAN 学习 Day1 —— 模型框架解析及 HelloKAN
不得不说,这个hellokan跑下来,真的很丝滑,而且感受到了作者团队的心思缜密,除了发挥模型自身的优势(理论上),还将模型优化、模型可视化、模型版本等细节都展示出来了。这也是我第一次使用ipynb跑模型,感受到了逐步运行的乐趣。目前在模型训练的体验上我对KAN产生了十分的好感,至于它的功能是否真的强大,还需要其他案例的测试。欢迎感兴趣的小伙伴一起交流!
2024-09-02 21:16:46 1525 1
原创 10天速通Tkinter库——Day9:《植物杂交实验室》完整内容
植物大战僵尸杂交版》游戏因其创新的杂交植物概念而受到玩家喜爱。该游戏中的杂交植物结合了不同基础植物的特性,创造出新的具有更复杂技能效果的植物。在这个背景下,我想在游戏主界面添加一个杂交实验室功能模块,让玩家能够创造、管理和体验这些杂交植物。
2024-08-28 00:32:20 831
原创 10天速通Tkinter库——Day8:《植物杂交实验室》杂交实验及历史记录界面
到这里整个项目的全部内容就结束了,今天我们实现了杂交实验、实验结果、杂交记录三个界面。杂交实验重点在于植物卡片的选择、杂交方法的选择,以及匹配算法;杂交记录则是在数据加载和展示部分略微复杂一点。
2024-08-27 22:59:46 794
原创 10天速通Tkinter库——Day7:《植物杂交实验室》主菜单及图鉴
到这里,我们就实现了杂交实验室主界面、基础植物图鉴和杂交植物图鉴,以及更多信息页面。简单的关闭和返回按钮我们可以直接使用tool.py中定义的方法,至于较难的卡片按钮矩阵,我们定义了Frame,然后双循环遍历杂交植物数据,创建按钮并绑定点击事件,并且对于杂交植物图鉴,还实现了上下页面跳转的功能,并且对页面更新也做了处理,消除了一开始的白屏卡顿。下期预告:杂交实验、杂交历史记录页面的实现。
2024-08-27 01:03:52 722
原创 10天速通Tkinter库——Day6:《植物杂交实验室》整体框架介绍
在10天速通Tkinter库——实践项目《植物杂交实验室》中,我展示了程序的运行效果,所有组件如下:今天我们先对整体框架、加载动画、游戏主界面和部分通用组件进行介绍。data:两个json保存游戏数据,一个是杂交植物数据,一个是杂交记录数据images:包括设计图片、植物卡片图片、植物描述信息图片、屏幕组件图片sounds:使用到的音频,包括背景音乐、点击按钮音频等等source:全部源码。
2024-08-26 16:27:23 1134
原创 10天速通Tkinter库——Day 5:使用config进行OptionMenu美化
在我们设计组件的时候,我们可以养成好习惯,统一使用config或者configure进行美化,大多数组件都是支持这些参数的,非常的好用。
2024-08-20 15:18:10 895
原创 10天速通Tkinter库——Day 4:花样button
今天使用label和canvas制作更精美的按钮,具有非常高的可创造性,可以大幅提升界面美感。# 加载图片dark_image = tk.PhotoImage(file="images\CloseButton.png") # 替换为你的暗图片路径light_image = tk.PhotoImage(file="images\CloseButtonHighlight.png") # 替换为你的亮图片路径"""鼠标进入Label时调用的函数""""""鼠标离开Label时调用的函数"""
2024-08-18 16:57:20 885
原创 10天速通Tkinter库——Day 2:窗口及布局
对Tkinter的窗口整体设置有了一定的了解,对pack、grid、place三种布局方式的特点和使用有了初步认识。
2024-08-15 13:31:41 838
原创 Transformer应用——机器翻译(English & Chinese)
"""自定义数据集"""self.data = data # 数据self.English = [item['english'].lower() for item in data] # 将英文文本添加到 self.English 列表,编码需要小写化self.Chinese = [item['chinese'] for item in data] # 将中文文本添加到 self.Chinese 列表self.tokenizer = tokenizer # token化工具。
2024-07-31 01:21:37 1343 6
原创 《tensor2tensor》源码解读
为Transformer模型的编码器准备输入和自注意力偏置,考虑了因果性、填充、位置编码、目标空间嵌入和类型嵌入等多种因素,确保编码器在训练和推理时能够正确处理输入数据。函数实现了一种饱和的 sigmoid 函数,其公式为:𝑦=min(1.0,max(0.0,1.2⋅𝜎(𝑥)−0.1)),其中,𝜎(𝑥) 是标准的 sigmoid 函数。将自注意力偏置和编码器-解码器注意力偏置转换为与编码器输入相同的数据类型,并返回编码器输入、自注意力偏置和编码器-解码器注意力偏置。,它是查询深度的平方根的倒数。
2024-07-23 22:03:39 901
原创 《Attention Is All You Need》论文学习
记录了学习论文《Attention is all you need》的主要过程,重点对transformer模型架构进行解读
2024-07-22 23:02:20 400
原创 无线传感网络
定义:传感器网络是由一组传感器节点以特定方式构成的无线网络,其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发布给观察者。基本思想:已知信号传播速度,根据信号的传播时间来计算节点间距离,然后利用三边或极大似然估计法等计算出节点的位置。洪范路由机制:节点产生或收到数据后向所有邻节点广播,直到信息过期或到达目的地才停止广播。传感器节点结构:传感器模块、处理器模块、无线通信模块(能量消耗最高)、能量供应模块。主要思想:根据节点的可用能量(PA)或传输路径上的能量需求,选择路径。动态拓扑:节点故障;
2024-07-03 22:20:08 542
原创 机器学习——层次聚类
层次聚类(Hierarchical Clustering)是一类算法的总称,分为两种方式:凝聚法:从下往上不断合并簇,将小类进行聚合分裂法:从上往下不断分离簇,将大类分割成小类。
2023-08-02 12:03:05 2883
原创 机器学习——K-Means聚类
K-Means 算法是一种无监督的聚类算法,其核心思想是:对于给定的样本集,按照样本点之间的距离大小,将样本集划分为K个簇,并让簇内的点尽量紧凑,簇间的点尽量分开算法流程图如下:K-Means算法流程如图,以为例:我们需要将图(a) 中的样本点划分为两类,则K-means聚类过程如下:第 1 步:从M个数据对象中任意选择2个对象作为初始聚类中心,如图(b) 所示。
2023-08-01 17:13:06 8526 1
原创 机器学习——线性回归
本文详细介绍了线性回归的基本原理和过程,展现了线性回归模型的scikit-learn实现,包括:普通线性回归、基于 L1 正则化的Lasso回归、基于 L2 正则化的岭回归、基于 L1 和 L2 正则化融合的ElasticNet回归四种,从结果看ElasticNet回归模型的性能最优不足的一点,模型的参数是随意取值的,由于没有做模型优化,所以四种模型的预测准确率都不是特别高,而且四种模型的区分度也不是很高感兴趣的朋友可以自己尝试完成优化任务,模型调优详情# 1. 波士顿房价数据"""
2023-07-30 21:26:27 6884 2
原创 机器学习工程实践——基于随机森林模型的数据挖掘项目流程
一个完整的数据挖掘项目流程主要包含六大部分,分别是商业理解、数据理解、数据准备、建立模型、模型评估、方案实施,如图所示数据挖掘项目流程。
2023-07-28 20:25:45 2111 1
原创 机器学习工程实践——模型调优
在模型选定后,一般还需进行模型的参数调优工作,介绍两种模型调优的基本方式:网格搜索寻优(Grid Search CV)和随机搜索寻优(Randomized Search CV)
2023-07-27 23:14:05 512 1
原创 机器学习工程实践——模型选择
模型选择,又称超参数选择,目的是确定模型使用的超参数具体的过程:首先在训练集和验证集上对多种模型选择(超参数选择)进行验证,选出平均误差最小的模型(超参数)。选出合适的模型(超参数)后,可以把训练集和验证集合并起来,重新把模型训练一遍,得到最终模型,然后再用测试集测试其泛化能力。
2023-07-27 19:15:59 1198 1
原创 机器学习工程实践——特征工程
所以对于第一个样本,它的原始类别是 “ 年龄-3 ”“性别-男”,所以它进行 one-hot编码后对应的向量就是[0,1,0,0,1,0,0,0,0];第二个样本编码后的向量为[1,0,0,1,0,0,0,0,0]以上三种填补,对于各个特征来说,本质上还是使用固定值填充,但是填充的值更接近实际情况,因为大部分数据的分布服从高斯分布,而高斯分布的中间部分占据了整体取值的较大比例。第 2 步:按照 f5 特征是否缺失将数据集划分为训练集和测试集两部分,则样本(0,2,4)作为训练集,样本(1,3)作为测试集。
2023-07-27 02:36:54 424 1
原创 机器学习工程实践——模型复杂度度量
在训练模型的过程中,我们通常不会用到样本的全部特征,因为有的特征并不重要,全部使用反而会增加模型的复杂度,干扰对样本类别的预测,所以引入稀疏规则化算子,它会学习如何去掉没用的信息特征,即把这些特征对应的权重系数。偏差也可以称为避免欠拟合,方差被称为避免过拟合,在实际建模过程中,我们可以调整模型函数的参数值,得到多组偏差和方差值,从而判断出最优参数,得到最佳模型,具体方法见下文。一般来说,偏差和方差是有冲突的,偏差随着模型复杂度的增加而降低,而方差随着模型复杂度的增加而增加,如图所示(依然不想画图,O.o)
2023-07-23 18:32:48 595
原创 机器学习工程实践——模型评估指标
labels是每个样本的预测类别标签;任意两个不同簇之间的最近距离越大(表示不同簇样本相隔越远),任意一个簇内距离最远的两个点的距离越小(表示簇内的样本距离越近),DI值就越大,即簇内相似度高,簇间相似度低。解释:预测结果为 类别0 的数据有5条,其中4条数据预测正确,则 类别0 的精度值为 0.8,类别1的精度值为0.33333333,类别2的精度值为0.5。当每个簇样本的平均距离越小(表示簇内的样本距离越近),簇间中心距离越大(表示不同簇样本相隔越远),DBI的值就越小,即簇内相似度高,簇间相似度低。
2023-07-22 13:13:13 632 1
原创 机器学习概述
机器学习是概率论、线性代数、信息论、最优化理论和计算机科学等多个领域交叉的学科传统编程模式:规则+数据——>传统编程——>答案机器学习模式:数据+答案——>机器学习——>规则机器学习特点:以计算机为工具平台,以数据为研究对象,以学习方法为中心研究包括:(1)机器学习方法:旨在开发新的学习方法(2)机器学习理论:旨在探求机器学习的有效性和效率(3)机器学习应用:主要考虑机器学习模型应用到实际中去,解决实际业务问题。
2023-07-11 00:46:40 4926 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人