模型泛化技巧“随机权重平均(Stochastic Weight Averaging, SWA)”介绍与Pytorch Lightning的SWA实现讲解


免费链接: Blogger(需翻Q)


SWA简介

SWA,全程为“Stochastic Weight Averaging”(随机权重平均)。它是一种深度学习中提高模型泛化能力的一种常用技巧。

其思路为:对于模型的权重,不直接使用最后的权重,而是将之前的权重做个平均

该方法适用于深度学习,不限领域、不限Optimzer,可以和多种技巧同时使用。

SWA公式

我们的模型参数记为: θ = { w 0 ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值