深度学习第五讲之池化层(Pooling layer)

22 篇文章 0 订阅
8 篇文章 4 订阅

欢迎关注鄙人公众号,技术干货随时看!
在这里插入图片描述

转载请注明出处
鄙人的新书《elasticsearch7完全开发指南》,欢迎订阅!

https://wenku.baidu.com/view/8ff2ce94591b6bd97f192279168884868762b8e7

《kibana权威指南》

https://wenku.baidu.com/view/24cfee1ce43a580216fc700abb68a98270feac21

在卷积神经网络中,卷积层之间往往会加上一个池化层。池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量。使用池化层即可以加快计算速度也有防止过拟合的作用。
  在图像识别领域,有时图像太大,我们需要减少训练参数的数量,它被要求在随后的卷积层之间周期性地引进池化层。池化的唯一目的是减少图像的空间大小。池化在每一个纵深维度上独自完成,因此图像的纵深保持不变。池化层的最常见形式是最大池化,还有平均池化层,用的较少就不作介绍了。最大池化层的效果如下图所示:
  
这里写图片描述

tensorflow对池化层提供的实现,可以方便的调用API用于工程开发:

#input表示上一层的输出上例图片中大左边大的矩阵,ksize定义了池化层过滤器的尺寸,strides定义的步长信息第一维和第四维都为1,padding定义了是否用全0填充SAME表示全0填充VALID表示不填充
pool = tf.nn.max_pool(input, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿童木-atom

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值