12 | 排序(下):如何用快排思想在O(n)内查找第K大元素?

上一节我讲了冒泡排序、插入排序、选择排序这三种排序算法,它们的时间复杂度都是 O(n2),比较高,适合小规模数据的排序。

今天,我讲两种时间复杂度为 O(nlogn) 的排序算法,归并排序快速排序。这两种排序算法适合大规模的数据排序,比上一节讲的那三种排序算法要更常用。

归并排序和快速排序都用到了分治思想,非常巧妙。我们可以借鉴这个思想,来解决非排序的问题,比如:如何在 O(n) 的时间复杂度内查找一个无序数组中的第 K 大元素? 

归并排序的原理(Merge Sort

如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

 https://img-blog.csdnimg.cn/20181228132400851

归并排序使用的就是分治思想

分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。

从我刚才的描述,你有没有感觉到,分治思想跟我们前面讲的递归思想很像。是的,分治算法一般都是用递归来实现的。

分治是一种解决问题的处理思想,递归是一种编程技巧这两者并不冲突。分治算法的思想我后面会有专门的一节来讲,现在不展开讨论,我们今天的重点还是排序算法。

如何用递归代码来实现归并排序

递归代码的编写技巧:分析得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。所以,要想写出归并排序的代码,我们先写出归并排序的递推公式。

递推公式:merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))终止条件:p >= r 不用再继续分解

解释一下这个递推公式。

merge_sort(p…r) 表示,给下标从 p r 之间的数组排序。我们将这个排序问题转化为了两个子问题,merge_sort(p…q) merge_sort(q+1…r),其中下标 q 等于 p r 的中间位置,也就是 (p+r)/2。当下标从 p q 和从 q+1 r 这两个子数组都排好序之后,我们再将两个有序的子数组合并在一起,这样下标从 p r 之间的数据就也排好序了。

伪代码:

// 归并排序算法, A 是数组,n 表示数组大小  merge_sort(A, n) {  merge_sort_c(A, 0, n-1)}// 递归调用函数merge_sort_c(A, p, r) {  // 递归终止条件  if p >= r  then return  
  //  p  r 之间的中间位置 q  q = (p+r) / 2  // 分治递归  merge_sort_c(A, p, q)  merge_sort_c(A, q+1, r)  //  A[p...q]  A[q+1...r] 合并为 A[p...r]  merge(A[p...r], A[p...q], A[q+1...r])}你可能已经发现了,merge(A[p…r], A[p…q], A[q+1…r]) 这个函数的作用就是,将已经有序的 A[p…q]  A[q+1…r] 合并成一个有序的数组,并且放入 A[p…r]。那这个过程具体该如何做呢?

如图所示,我们申请一个临时数组 tmp,大小与 A[p…r] 相同。我们用两个游标 i j,分别指向 A[p…q] A[q+1…r] 的第一个元素。比较这两个元素 A[i] A[j],如果 A[i]<=A[j],我们就把 A[i] 放入到临时数组 tmp,并且 i 后移一位,否则将 A[j] 放入到数组 tmpj 后移一位。

继续上述比较过程,直到其中一个子数组中的所有数据都放入临时数组中,再把另一个数组中的数据依次加入到临时数组的末尾,这个时候,临时数组中存储的就是两个子数组合并之后的结果了。最后再把临时数组 tmp 中的数据拷贝到原数组 A[p…r] 中。

https://img-blog.csdnimg.cn/20181228132400983

我们把 merge() 函数写成伪代码,就是下面这样:

merge(A[p...r], A[p...q], A[q+1...r]) {  var i := pj := q+1k := 0 // 初始化变量 i, j, k  var tmp := new array[0...r-p] // 申请一个大小跟 A[p...r] 一样的临时数组  while i<=q AND j<=r do {    if A[i] <= A[j] {      tmp[k++] = A[i++] // i++ 等于 i:=i+1    } else {      tmp[k++] = A[j++]    }  }  // 判断哪个子数组中有剩余的数据  var start := i,end := q  if j<=r then start := j, end:=r // 将剩余的数据拷贝到临时数组 tmp  while start <= end do {    tmp[k++] = A[start++]  }  //  tmp 中的数组拷贝回 A[p...r]  for i:=0 to r-p do {    A[p+i] = tmp[i]  }}

归并排序的性能分析

第一,归并排序是稳定的排序算法吗?

归并排序稳不稳定关键要看 merge() 函数,也就是两个有序子数组合并成一个有序数组的那部分代码。

在合并的过程中,如果 A[p…q] A[q+1…r] 之间有值相同的元素,那我们可以像伪代码中那样,先把 A[p…q] 中的元素放入 tmp 数组。这样就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法。

第二,归并排序的时间复杂度是多少?

归并排序涉及递归,时间复杂度的分析稍微有点复杂。我们正好借此机会来学习一下,如何分析递归代码的时间复杂度。

递归的适用场景是:一个问题 a 可以分解为多个子问题 b、c,那求解问题 a 就可以分解为求解问题 b、c。问题 b、c 解决之后,我们再把 b、c 的结果合并成 a 的结果。

如果我们定义求解问题 a 的时间是 T(a),求解问题 bc 的时间分别是 T(b) T( c),那我们就可以得到这样的递推关系式:

T(a) = T(b) + T(c) + K

其中 K 等于将两个子问题 bc 的结果合并成问题 a 的结果所消耗的时间。

从刚刚的分析,我们可以得到一个重要的结论:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。

我们假设对 n 个元素进行归并排序需要的时间是 T(n),那分解成两个子数组排序的时间都是 T(n/2)。我们知道,merge() 函数合并两个有序子数组的时间复杂度是 O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:

T(1) = C   n=1 时,只需要常量级的执行时间,所以表示为 C。T(n) = 2*T(n/2) + n; n>1T(n) = 2*T(n/2) + n     = 2*(2*T(n/4) + n/2) + n = 4*T(n/4) + 2*n     = 4*(2*T(n/8) + n/4) + 2*n = 8*T(n/8) + 3*n     = 8*(2*T(n/16) + n/8) + 3*n = 16*T(n/16) + 4*n     ......     = 2^k * T(n/2^k) + k * n     ......

通过这样一步一步分解推导,我们可以得到 T(n) = 2^kT(n/2^k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)

归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。

第三,归并排序的空间复杂度是多少?

归并排序的时间复杂度任何情况下都是 O(nlogn),看起来非常优秀。(待会儿你会发现,即便是快速排序,最坏情况下,时间复杂度也是 O(n2)。)但是,归并排序并没有像快排那样,应用广泛,这是为什么呢?因为它有一个致命的“弱点”,那就是归并排序不是原地排序算法。

如果我们继续按照分析递归时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是 O(nlogn)。不过,类似分析时间复杂度那样来分析空间复杂度,这个思路对吗?

实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。刚刚我们忘记了最重要的一点,那就是,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)

快速排序的原理:

快排利用的也是分治思想。乍看起来,它有点像归并排序,但是思路其实完全不一样。

快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。

https://img-blog.csdnimg.cn/2018122813240132

根据分治、递归的处理思想,我们可以用递归排序下标从 p q-1 之间的数据和下标从 q+1 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

如果我们用递推公式来将上面的过程写出来的话,就是这样:

递推公式:quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)终止条件:p >= r
// 快速排序,A 是数组,n 表示数组的大小quick_sort(A, n) {  quick_sort_c(A, 0, n-1)}// 快速排序递归函数,p,r 为下标quick_sort_c(A, p, r) {  if p >= r then return q = partition(A, p, r) 
// 获取分区点  quick_sort_c(A, p, q-1)  quick_sort_c(A, q+1, r)}

归并排序中有一个 merge() 合并函数,我们这里有一个 partition() 分区函数。partition() 分区函数就是随机选择一个元素作为 pivot(一般情况下,可以选择 p r 区间的最后一个元素),然后对 A[p…r] 分区,函数返回 pivot 的下标。

如果我们不考虑空间消耗的话,partition() 分区函数可以写得非常简单。我们申请两个临时数组 X Y,遍历 A[p…r],将小于 pivot 的元素都拷贝到临时数组 X,将大于 pivot 的元素都拷贝到临时数组 Y,最后再将数组 X 和数组 Y 中数据顺序拷贝到 A[p…r]

https://img-blog.csdnimg.cn/20181228132401155

但是,如果按照这种思路实现的话,partition() 函数就需要很多额外的内存空间,所以快排就不是原地排序算法了。如果我们希望快排是原地排序算法,那它的空间复杂度得是 O(1),那 partition() 分区函数就不能占用太多额外的内存空间,我们就需要在 A[p…r] 的原地完成分区操作。

原地分区函数的实现思路伪代码:

partition(A, p, r) {  pivot := A[r]  i := p  for j := p to r-1 do {    if A[j] < pivot {      swap A[i] with A[j]      i := i+1    }  }  swap A[i] with A[r]  return i

这里的处理有点类似选择排序。我们通过游标 i 把 A[p…r-1]分成两部分。A[p…i-1] 的元素都是小于 pivot 的,我们暂且叫它“已处理区间”,A[i…r-1] 是“未处理区间”。我们每次都从未处理的区间 A[i…r-1] 中取一个元素 A[j],与 pivot 对比,如果小于 pivot,则将其加入到已处理区间的尾部,也就是 A[i] 的位置。

数组的插入操作还记得吗?在数组某个位置插入元素,需要搬移数据,非常耗时。当时我们也讲了一种处理技巧,就是交换,在 O(1) 的时间复杂度内完成插入操作。这里我们也借助这个思想,只需要将 A[i] A[j] 交换,就可以在 O(1) 时间复杂度内将 A[j] 放到下标为 i 的位置。

https://img-blog.csdnimg.cn/20181228132401204

因为分区的过程涉及交换操作,如果数组中有两个相同的元素,比如序列 68763594,在经过第一次分区操作之后,两个 6 的相对先后顺序就会改变。所以,快速排序并不是一个稳定的排序算法

归并排序和快速排序的区别:

https://img-blog.csdnimg.cn/20181228132401252

归并排序的处理过程是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。

快速排序的性能分析

快排也是用递归来实现的。对于递归代码的时间复杂度,我前面总结的公式,这里也还是适用的。如果每次分区操作,都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并是相同的。所以,快排的时间复杂度也是 O(nlogn)

T(1) = C   n=1 时,只需要常量级的执行时间,所以表示为 C。T(n) = 2*T(n/2) + n n>1

但是,公式成立的前提是每次分区操作,我们选择的 pivot 都很合适,正好能将大区间对等地一分为二。但实际上这种情况是很难实现的。

我举一个比较极端的例子。如果数组中的数据原来已经是有序的了,比如 13568。如果我们每次选择最后一个元素作为 pivot,那每次分区得到的两个区间都是不均等的。我们需要进行大约 n 次分区操作,才能完成快排的整个过程。每次分区我们平均要扫描大约 n/2 个元素,这种情况下,快排的时间复杂度就从 O(nlogn) 退化成了 O(n2)

我们刚刚讲了两个极端情况下的时间复杂度,一个是分区极其均衡,一个是分区极其不均衡。它们分别对应快排的最好情况时间复杂度和最坏情况时间复杂度。那快排的平均情况时间复杂度是多少呢?

我们假设每次分区操作都将区间分成大小为 9:1 的两个小区间。我们继续套用递归时间复杂度的递推公式,就会变成这样:

T(1) = C   n=1 时,只需要常量级的执行时间,所以表示为 C。T(n) = T(n/10) + T(9*n/10) + n n>1

直接给你结论:T(n) 在大部分情况下的时间复杂度都可以做到 O(nlogn),只有在极端情况下,才会退化到 O(n2)

解答开篇

快排核心思想就是分治分区,我们可以利用分区的思想,来解答开篇的问题:O(n) 时间复杂度内求无序数组中的第 K 大元素。比如,4 2 5 12 3 这样一组数据,第 3 大元素就是 4

我们选择数组区间 A[0…n-1] 的最后一个元素 A[n-1] 作为 pivot,对数组 A[0…n-1] 原地分区,这样数组就分成了三部分,A[0…p-1]A[p]A[p+1…n-1]

如果 p+1=K,那 A[p] 就是要求解的元素;如果 K>p+1, 说明第 K 大元素出现在 A[p+1…n-1] 区间,我们再按照上面的思路递归地在 A[p+1…n-1] 这个区间内查找。同理,如果 K<p+1,那我们就在 A[0…p-1] 区间查找。

https://img-blog.csdnimg.cn/20181228132401299

(不懂)我们再来看,为什么上述解决思路的时间复杂度是 O(n)

第一次分区查找,我们需要对大小为 n 的数组执行分区操作,需要遍历 n 个元素。第二次分区查找,我们只需要对大小为 n/2 的数组执行分区操作,需要遍历 n/2 个元素。依次类推,分区遍历元素的个数分别为、n/2n/4n/8n/16.……直到区间缩小为 1

如果我们把每次分区遍历的元素个数加起来,就是:n+n/2+n/4+n/8+…+1。这是一个等比数列求和,最后的和等于 2n-1。所以,上述解决思路的时间复杂度就为 O(n)

内容小结

归并排序和快速排序用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。同理,理解快排的重点也是理解递推公式,还有 partition() 分区函数。

归并排序算法是一种在任何情况下时间复杂度都比较稳定的排序算法,但空间复杂度比较高,是 O(n)。正因为此,它也没有快排应用广泛。

快速排序算法虽然最坏情况下的时间复杂度是 O(n2),但是平均情况下时间复杂度都是 O(nlogn)。不仅如此,快速排序算法时间复杂度退化到 O(n2) 的概率非常小,我们可以通过合理地选择 pivot 来避免这种情况。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
可以使用快速选择算法(QuickSelect Algorithm)来实现在 O(n) 时间复杂度内查找数组中第 k 大的元素。 快速选择算法的基本思路与快速排序类似,都是通过分治的思想将问题规模不断缩小。但是,快速选择算法只需要对单边递归进行处理,而不需要对两边都递归处理。具体步骤如下: 1. 选择数组中的一个元素作为 pivot 元素。 2. 将数组中小于 pivot 的元素放在 pivot 左边,大于 pivot 的元素放在 pivot 右边。这个过程可以使用 partition 函数实现,可以参考快速排序的实现。 3. 如果 pivot 的位置恰好为 k-1,则 pivot 就是第 k 大的元素,直接返回。 4. 如果 pivot 的位置小于 k-1,则第 k 大的元素在 pivot 右边,对右边的元素再进行快速选择。 5. 如果 pivot 的位置大于 k-1,则第 k 大的元素在 pivot 左边,对左边的元素再进行快速选择。 下面是一个基于快速选择算法的实现: ```c int partition(int arr[], int left, int right) { int pivot = arr[right]; int i = left - 1; for (int j = left; j < right; j++) { if (arr[j] < pivot) { i++; int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } int temp = arr[i + 1]; arr[i + 1] = arr[right]; arr[right] = temp; return i + 1; } int quickSelect(int arr[], int left, int right, int k) { if (left == right) { return arr[left]; } int pivotIndex = partition(arr, left, right); if (pivotIndex == k - 1) { return arr[pivotIndex]; } else if (pivotIndex < k - 1) { return quickSelect(arr, pivotIndex + 1, right, k); } else { return quickSelect(arr, left, pivotIndex - 1, k); } } int findKthLargest(int arr[], int size, int k) { return quickSelect(arr, 0, size - 1, size - k + 1); } ``` 其中,`partition` 函数用于将数组分成左右两个部分,`quickSelect` 函数用于递归地进行快速选择,`findKthLargest` 函数是对外的接口,用于调用 `quickSelect` 函数并返回结果。 需要注意的是,在 `quickSelect` 函数中,`k` 的是倒数第 k 大的元素在数组中的位置,因此需要将 `size - k + 1` 作为 `quickSelect` 的参数传入,最终返回的是第 k 大的元素

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值