chatgpt
文章平均质量分 79
手把手教你学AI
sss
展开
-
国内最大Llama开源社区发布首个预训练中文版Llama2
7月31日,Llama中文社区率先完成了国内,从模型底层实现了Llama2中文能力的大幅优化和提升。毋庸置疑,中文版Llama2一经发布将开启国内大模型新时代!全球最强,但中文短板Meta不负众望,于7月19日凌晨开源了第一代LLaMA的升级版:Llama2,7B、13B和70B三种大小的模型全开放并且可免费商用。作为AI领域最强大的开源大模型,Llama2基于2万亿token数据预训练,并在100万人类标记数据上微调得到对话模型。原创 2023-08-02 17:43:34 · 858 阅读 · 0 评论 -
设置和使用DragGAN:搭建非官方的演示版
ragGAN的官方版还没有发布,但是已经有非官方版的实现了,我们看看如何使用。DragGAN不仅让GAN重新回到竞争轨道上,而且为GAN图像处理开辟了新的可能性。正式版本将于本月发布。但是现在已经可以在一个非官方的演示中试用这个新工具了。原创 2023-07-11 15:25:30 · 258 阅读 · 0 评论 -
0代码训练GPT-5?MIT微软证实GPT-4涌现自我纠错能力迭代
2. 即使对于GPT-4模型,性能提升也最多只能算是适度的(在预算为7000个token的情况下,通过率从66%提高到71%,约等于45个独立同分布的GPT-4样本的成本),并且取决于初始程序的多样性足够丰富。3. 使用GPT-4生成的反馈替换GPT-3.5对错误的解释,可以获得更好的自修复性能,甚至超过基准的无修复GPT-3.5方法(在7000个token下,从50%提高到54%)。近日,MIT和微软的学者发现,在GPT-4和GPT-3.5之中,只有GPT-4表现出了有效的自修复。原创 2023-07-08 16:47:34 · 170 阅读 · 0 评论 -
ChatGPT,你的智能助手,社交办公利器
无论是工作中的问题求解、日常生活的疑惑迷茫,还是灵感创作的启示不断,ChatGPT都将成为你最可靠、最智慧的伙伴!其次,ChatGPT拥有极高的语言处理能力:它能够理解你的问题,并以通俗易懂的语言回答你,就像与一个智慧的朋友对话一样。无论你是需要工作上的帮助,还是寻找创意灵感,ChatGPT都能及时提供有价值的信息和建议。首先,ChatGPT具备强大的多领域知识:从科学技术到人文艺术,从旅行攻略到美妆时尚,它涵盖了各个领域的丰富知识库,无论你遇到什么问题,它都能给出精准、可靠的答案。原创 2023-07-05 21:36:48 · 206 阅读 · 0 评论 -
大型语言模型与知识图谱协同研究综述:两大技术优势互补
而在用 LLM 来增强知识图谱方面,LLM 已被用于多种与知识图谱相关的应用,比如知识图谱嵌入、知识图谱补全、知识图谱构建、知识图谱到文本的生成、知识图谱问答。然而,知识图谱很难构建,并且由于真实世界知识图谱往往是不完备的,还会动态变化,因此当前的知识图谱方法难以应对。在将知识图谱整合进 LLM 方面,之前的研究可以分为三类:将知识图谱整合进训练目标、将知识图谱整合进 LLM 的输入、将知识图谱整合进附加的融合模块。但是,文本语料库中的知识通常是隐式的和非结构化的,而知识图谱中的知识是显式的和结构化的。原创 2023-07-03 19:38:30 · 1807 阅读 · 0 评论 -
OpenAI 又赢麻了谷歌 DeepMind 创始人刚称 Gemini 能碾压 GPT-4
根据此前的介绍,Gemini 一开始就以多模式、高效的工具和 API 集成为目标而创建,旨在支持未来的创新,例如内存和规划。Hassabis 的任务就是加快谷歌的 AI 开发进度,同时管理种种未知的潜在风险。要进一步开发 ChatGPT 及类似功能的语言模型,DeepMind 认为还有另一个重要的附加步骤,就是使用基于人类对 AI 模型答案做出的反馈,进而借助强化学习提高其性能。现在,Hassabis 表示,他的团队将 GPT 技术与 AlphaGo 的特性加以结合,希望赋予系统规划和解决问题的新能力。原创 2023-06-29 15:29:06 · 277 阅读 · 0 评论 -
月薪2万,被新同事15秒气走。
用AI辅助工作后,再紧急,小彭也能秒产几个方案给甲方挑选,已连续两月拿到A绩效,新季度涨薪也有他一份。借助AI,在10分钟内根据活动拨款预算,匹配活动主题定位,提供不同礼盒方案,让老板自由挑选。任何上班族,无论你的工作涉及文字、图片、数字,或是办公软件全家桶,它都能成为你的高效助理。教你跟AI高效沟通的模板,简单的提问公式,或者几个提示词,就能让AI秒出成果。做画册宣传时,甲方偶尔要求实物图,但摄影图版权贵,又难以找到符合主题的。特殊节点,需要的宣传物料很多,又要格调,又追求数量,两只手做不过来。原创 2023-06-25 19:39:12 · 465 阅读 · 0 评论 -
【发布】ChatGLM2-6B:性能大幅提升,8-32k上下文,推理提速42%
Multi-Query Attention 同时也降低了生成过程中 KV Cache 的显存占用,此外,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。因此,使用 6GB 显存的显卡进行 INT4 量化的推理时,初代的 ChatGLM-6B 模型最多能够生成 1119 个字符就会提示显存耗尽,而 ChatGLM2-6B 能够生成至少 8192 个字符。,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。原创 2023-06-25 19:04:33 · 1260 阅读 · 0 评论 -
Prompt Engineering 面面观
提示工程(Prompt Engineering),也称为 In-Context Prompting,是指在不更新模型权重的情况下如何与 LLM 交互以引导其行为以获得所需结果的方法。在提示工程中,任务的描述会被嵌入到输入中。例如,不是隐含地给予模型一定的参数,而是以问题的形式直接输入。提示工程的典型工作方式是将一个或多个任务转换为基于提示的数据集,并通过所谓的“基于提示的学习(prompt-based learning)”来训练语言模型。提示工程不仅仅是关于设计和研发提示词。原创 2023-06-22 16:57:45 · 2541 阅读 · 0 评论 -
詹姆斯·卡梅隆自曝:新终结者电影剧本ChatGPT写 结局,AI自己定
毕竟,过去的科幻小说都是从想象出发,反哺现实。著名导演詹姆斯·卡梅隆透露,他正在创作下一部「终结者」的剧本,而这次的灵感来自现实世界中AI的崛起,比如OpenAI的ChatGPT。1984年的第一部「终结者」电影中描绘了一个属于未来的AI防御系统「天网」,当时专家就表示,要警惕未来可能的「天网结局」。现实的情况是,今天的AI系统是高度专业化的,程序员经常设计一个AI,使其只擅长一项任务,如玩一个棋盘游戏。然而,时间转到2023年,当AI真正的大规模出现在我们的眼前时,真实的情况好像和1984年截然不同。原创 2023-05-27 14:11:48 · 174 阅读 · 0 评论 -
reduce_sum()函数 Tensorflow
想要了解reduce_sum()函数,我们首先要了解数组的纬度坐标,对于数组a来说[[1,2],[[5,6]], [[3,4], [7,8]]的纬度坐标是0,[1,2],[3,4],[5,6],[7,8]这4个数组的纬度坐标是1,而1,2,3,4,5,6,7,8这8个数的纬度坐标是2。在维数1的层面上进行求和,也就是[1,2],[3,4],[5,6],[7,8]这四个数组上进行求和,(两两一组,因为前两个和后两个的地位相同)降一个维度,也就是说“掉一层方括号”,得出[[ 4, 6], [12, 14]]原创 2023-05-27 07:01:14 · 164 阅读 · 0 评论