Signal processing
文章平均质量分 67
这孩子谁懂哈
坚持比努力更可怕/You Reap What You Sow
展开
-
DFT(离散傅里叶变换)和DCT(离散余弦变换)有何区别和联系
首先,在理解这3个变量之前,你要知道DTFT:DTFT是离散时间傅里叶变换,用来表达连续的信号的频谱。然后理解DFT:DFT是离散傅里叶变换,针对的是离散的信号和频谱。DFT是DTFT变化而来,其实就是将连续时间t变成了nT. 为什么要这样做呢,因为计算机是在数字环境下工作的,它不可能看见或者处理现实中连续的信号,只能够进行离散计算,在真实性上尽可能地逼近连续信号。所以DFT是为了我们能够去原创 2017-01-15 14:58:42 · 31621 阅读 · 3 评论 -
巴特沃斯低通滤波
巴特沃斯滤波器是电子滤波器的一种。巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 在参考下边的代码的时候,遇到了一个截止频率的问题,现解释如下:无论是什么样的滤波器,一般都是指-3db的位置,也就是说从滤波器的通带的增益算起,下降-3db的位置。由于d原创 2017-01-15 15:03:20 · 11206 阅读 · 0 评论 -
信号处理中用DCT进行图像处理
转自:http://blog.csdn.net/ahafg/article/details/48808443DCT又称离散余弦变换,是一种块变换方式,只使用余弦函数来表达信号,与傅里叶变换紧密相关。常用于图像数据的压缩,通过将图像分成大小相等(一般为8*8)的块,利用DCT对其进行变换,得到更加简洁的数据。因为图像像素间存在较大的空间相关性,DCT可以大大减小这些相关性,使图像能量集中在左上角区域原创 2017-01-15 15:02:25 · 7090 阅读 · 0 评论 -
DWT(离散小波变换)
今天读paper遇到用DWT做denoising处理的,以前只是听过离散小波变换,没怎么学过,顺便学习一下。离散小波变换(Discrete Wavelet Transformation)百度百科:离散小波变换是对基本小波的尺度和平移进行离散化。在图像处理中,常采用二进小波作为小波变换函数,即使用2的整数次幂进行划分。余弦变换是经典的谱分析工具,他考察的是整个时域过程的频域特征或整个频域过程的时域特原创 2017-01-15 15:01:38 · 81389 阅读 · 10 评论 -
语音信号处理之(四)梅尔频率倒谱系数(MFCC)
语音信号处理之(四)梅尔频率倒谱系数(MFCC)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 这学期有《语音信号处理》这门课,快考试了,所以也要了解了解相关的知识点。呵呵,平时没怎么听课,现在只能抱佛脚了。顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下。下面总结的是第四个知识点:MFCC。因为花的时间不多,所以可能会有不少说的不妥的地方转载 2017-01-19 15:34:47 · 1173 阅读 · 0 评论 -
PDF和CDF图的区别
能完整描述一个实数随机变量X的概率分布,是概率密度函数的积分。对于所有实数x ,CDF(cumulative distribution function),与概率密度函数probability density function(小写pdf)相对。随机变量小于或者等于某个数值的概率P(X在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确原创 2017-01-15 15:00:34 · 91596 阅读 · 8 评论 -
FMCW
FMCW(Frequency Modulated Continuous Wave),即调频连续波。FMCW技术和脉冲雷达技术是两种在高精度雷达测距中使用的技术。其基本原理为,发射波为高频连续波,其频率随时间按照三角波规律变化。雷达接收的回波的频率与发射的频率变化规律相同,都是三角波规律,只是有一个时间差,利用这个微小的时间差可计算出目标距离。18KHZ-20KHZ由于它具有无距离盲区、高分辨率和低原创 2017-01-15 14:59:53 · 22520 阅读 · 1 评论 -
信号处理中的滤波器的阶数和谐波的理解
最近在读paper的时候,遇到了一些以前遗忘的问题,先重新查找,记录在这里,以备不时之查看。我相信一定有小伙伴跟我有过一样的疑惑,那就是我们在使用滤波器的时候,总是遇到滤波器的阶数这个概念参数,我们很多都是根据别的paper里的设置,设置自己的科研参数,其实并不是很理解其中的含义:其实我们常用的阶数N的意思是:滤波器的阶数,就是指过滤谐波的次数,一般来讲,同样的滤波器,其阶原创 2017-02-23 20:16:26 · 24953 阅读 · 2 评论 -
小波去燥原理分析
关于小波变换 小波变换(wavelet transform,WT)是一种新的变换分析方法,能够在时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求。去噪的必要性 一般来说信号中都是带有信号的,特别是信号的采集过程中,在接收端除了获取目标信号外还会引入噪声。常见的噪声包括高斯白噪声,转载 2017-03-24 21:12:43 · 29324 阅读 · 4 评论 -
OFDM大白话讲解
给”小白”图示讲解OFDM的原理 目录(?)[+]章节一时域上的OFDM章节二频域上的OFDM章节三用IFFT实现OFDM补充章节从频谱上来看正交性继续说明关于物理层的信号继续补充关于负频率注:本文首发在QQ空间(因为需要同行的熟人们指正)。因QQ的封闭性,这里重贴一次。本文地址:http://blog.csdn.NET/madongchunqiu转载 2017-06-01 14:31:33 · 30912 阅读 · 8 评论 -
大白话讲解信号处理中的频谱泄露
一、什么是频谱泄露? 频谱泄露与傅里叶变换尤其是离散时间傅里叶变换有关,对于频谱泄露,通常的解释是这样的: 信号为无限长序列,运算需要截取其中一部分(截断),于是需要加窗函数,加了窗函数相当于时域相乘,于是相当于频域卷积,于是频谱中除了本来该有的主瓣之外,还会出现本不该有的旁瓣,这就是频谱泄露!为了减弱频谱泄露,可以采用加权的窗函数,加权的窗函数包括平顶窗、汉宁窗、高斯窗等等。而未加权的矩形窗泄转载 2017-05-22 16:47:12 · 12236 阅读 · 2 评论 -
FIR低通滤波
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器。与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR 滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。因此,它在高保真的信号处理,如数字音频、图像处理、数据传输、生物原创 2017-01-15 15:03:23 · 6536 阅读 · 0 评论 -
移动均值滤波
移动平均滤波基于统计规律,将连续的采样数据看成一个长度固定为N的队列,在新的一次测量后,上述队列的首数据去掉,其余N-1个数据依次前移,并将新的采样数据插入,作为新队列的尾;然后对这个队列进行算术运算,并将其结果做为本次测量的结果。在信号处理的时候,常用到移动平均滤波器进行去噪,假设输入为x,输出为y,则移动平均滤波器的计算公式如下所示: Fs = 1000;原创 2017-01-15 15:03:26 · 2668 阅读 · 0 评论 -
自适应滤波
自适应滤波存在于信号处理、控制、图像处理等许多不同领域,它是一种智能更有针对性的滤波方法,通常用于去噪。%****************************************************************************************% % 创建两个信号Mix_Signal_1 和信号 Mix_Signal原创 2017-01-15 15:03:31 · 2284 阅读 · 3 评论 -
Doppler Shift
当移动台以恒定的速率沿某一方向移动时,由于传播路程差的原因,会造成相位和频率的变化,通常将这种变化称为多普勒频移。多普勒效应造成的发射和接收的频率之差称为多普勒频移。它揭示了波的属性在运动中发生变化的规律。主要内容为:物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高 (蓝移 blue shift)。多普勒频移,当运动在波源后面时,会产生相反原创 2017-01-15 14:59:59 · 1526 阅读 · 0 评论 -
Normalization(数据归一化)
数据归一化方法大全在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确原创 2017-01-15 15:00:01 · 2077 阅读 · 0 评论 -
信号里的convolution和correlation
两个信号的在时域的相乘=在频域的卷积 时域的卷积=在频域的相乘相关是不用翻转还是 1,2 然后 相乘再相加。原创 2017-01-15 15:00:04 · 1412 阅读 · 0 评论 -
Matlab画时域和频谱图
data = audioread("filename.wav")/wavread();plot(data)spectrogram(data,8192,7168,8192,44100,'yaxis')[S,F,T,P]=spectrogram(x,window,noverlap,nfft,fs) [S,F,T,P]=spectrogram(x,window,noverlap,F,fs)说明:原创 2017-01-15 15:00:12 · 94278 阅读 · 2 评论 -
Frequency bin
在读paper的时候总是遇到很多都 提到frequency bin,一直很纳闷,不是很理解,后来经过查资料和师兄们的帮助,似乎有了一点理解。raw data 经过FFT后得到的频谱图中,频率轴的频率间阁或分辨率,通常取决采样率和采样点。bin=采样率/采样点数。原创 2017-01-15 15:00:37 · 7526 阅读 · 4 评论 -
信号处理中为什么用复信号
转自:http://www.lofter.com/?index163Image=1464245427918&act=qbblogEntry_20141022_01有关复信号,不清楚的可以学习一下! 中国通信网-通信资信号是信息的载体,实际的信号总是实的,但在实际应用中采用复信号却可以带来很大好处,由于实信号具有共轭对称的频谱,从信息的角度来看,其负频谱部分是冗余的,将实信号的负频谱部分去掉,只保原创 2017-01-15 15:00:48 · 14330 阅读 · 0 评论 -
MFCC特征提取的MatLab的代码实现
语音信号处理MFCC提取的Matlab源码,Matlab调试运行的时候注意添加语音工具箱voicebox查找路径。即,Matlab:File->Set Path…->Add Folder… 选择你所解压的voicebox文件夹路径。[x fs]=wavread('rec2016-12-17_14h30m04.761s.wav');bank=melbankm(24,256,fs,0,0.4,'m')原创 2017-01-15 15:02:47 · 5879 阅读 · 3 评论 -
MFCC基于语音的求解过程(二)
在语音辨识(Speech Recognition)和语者辨识(Speaker Recognition)方面,最常用到的语音特征就是「梅尔倒频谱系数」(Mel-scale Frequency Cepstral Coefficients,简称MFCC),此参数考虑到人耳对不同频率的感受程度,因此特别适合用在语音辨识。下面简单的介绍一下求解MFCC的过程。1.预强调(Pre-emphasis):将语音讯原创 2017-01-15 15:02:52 · 733 阅读 · 0 评论 -
小波滤波
信号源送出携带着我们希望传送的有用信息,然而在信号变化及传输过程中,由于噪声及干扰的叠加,使信号的辨认产生困难,要复原携带的有用信号,必须去除信号中叠加的噪声和干扰成分,如果噪声的频率高于或低于有效信号,通常采用滤波方法去除噪声,也可以通过使信号平滑的方法抑制干扰带来的毛刺。滤波方法是一种频域处理方法,在分析信号的频率特性时,信号变化率小的部分对应低频分量,变化率大的部分则对应高频分量。用滤波的方原创 2017-01-15 15:03:34 · 15898 阅读 · 0 评论 -
大白话讲解小波变换由来
目录(?)[+]小波的发展历史与驱动傅里叶变换短时傅里叶变换小波变换傅里叶变换小波变换三种变换的对比小波变换离散小波变换连续小波变换小波的多分辨率阐述信号空间尺度函数多分辨率分析多分辨率流程其他突变信号与吉布斯效应海森堡不确定原理降维窗口化参考资料 小波的发展历史与驱动傅里叶变换短时傅里叶变换小波变换傅里叶变换小波变换三种变换的对比小波变换离散小波变换连续小波变换转载 2017-05-22 17:09:36 · 33332 阅读 · 7 评论