FMCW

FMCW(Frequency Modulated Continuous Wave),即调频连续波。FMCW技术和脉冲雷达技术是两种在高精度雷达测距中使用的技术。其基本原理为,发射波为高频连续波,其频率随时间按照三角波规律变化。雷达接收的回波的频率与发射的频率变化规律相同,都是三角波规律,只是有一个时间差,利用这个微小的时间差可计算出目标距离。18KHZ-20KHZ
由于 它具有无距离盲区、高分辨率和低发射功率 等优点,近年来受到了人们的广泛关注。

最近在MobSys15'上 看到一篇文章title为:“Contactless Sleep Apnea Detection on SmartPhone” 利用把手机转换为Sonar来检测睡眠的文章。
利用FMCW来检测距离的一个实例:

 在呼吸的时候会有一个移动针对手机发出的声波:那么就会发生一个多普勒频偏:
          delay time 
 
frequency shift:(利用FFT得到frequency shift)
  
那么我们就能得到距离d了。

调频连续波(FMCW)雷达的原理为发送具有一定带宽、频率线性变化的连续信号,再对接收到的连续信号进行快速傅里叶变换,通过发送与接收信号的频率差来计算两个信号的时间差,最后与脉冲波雷达物位计一样,由时间差得到对应的距离值。FMCW雷达能够获取很高的精度,其精度主要取决于压控振荡器的线性度和温漂。

  FMcw 雷达通过发射频率调制的连续波信号,从回波信号中提取目标距离信息。FMcw分为线性调频和非线性调频(如正弦波调频)两种。使用非线性调频方式时,每个目标产生的差拍频率不唯一,一般只适用于单目标的场合,如雷达高度计等;线性调频方式适合于用FFT算法测量频率,应用最广。这种方式使每个目标产生的差拍信号都是单一频率,但其对线性调频的线性度要求很高,比较常用的调制波形是三角波和锯齿波,物位仪表常用锯齿波高频方式。FMCW 雷达发射和接收信号的原理如图2所示。


 图2中,实线为雷达天线发送信号ft;虚线为雷达接收信号fr;B为信号的带宽。发射信号的调频周期T要远大于目标最大回波时延td,即信号由天线发送经物料反射,再由天线接收所经的时间td比信号期T要小得多。发送信号和接收信号由于时延引起频率的变换它们的频率差就是差频信号,可用fif表示。显然差额信号fif的大小正比于天线与目标间的距离R,即:


 

### FMCW 技术在 3D 应用中的相关内容 FMCW(Frequency Modulated Continuous Wave)技术是一种调频连续波雷达技术,在汽车传感器领域具有广泛应用潜力。它通过发射频率随时间变化的连续信号来实现目标的距离和速度测量。以下是关于其在 3D 应用中的具体讨论: #### 距离与速度测量原理 FMCW 雷达利用多普勒效应以及回波信号的时间延迟特性,能够精确计算目标物体的距离和相对运动速度[^3]。这种能力使其非常适合用于动态环境下的实时感知任务。 #### 结合 Lidar 的优势 当 FMCW 雷达与 LiDAR 协同工作时,可以弥补各自的技术短板并增强整体系统的鲁棒性和精度。例如,LiDAR 提供高分辨率的空间几何信息,而 FMCW 则擅长捕捉高速移动对象的速度矢量。两者的融合不仅提高了三维场景重建的质量,还增强了对复杂交通状况的理解力。 #### 对于未来发展趋势的影响 随着半导体工艺进步使得将复杂的光学/射频前端集成到单颗芯片成为可能,这将进一步推动低成本、小型化的3D主动传感设备普及化过程。这意味着未来的自动驾驶车辆可能会装备更多基于此类技术构建起来的小型高效感测单元[^1]。 此外,在面对新型四维(4D)雷达所产生的海量时空序列数据时,传统迭代最近点算法(ICP)已显现出局限性;此时引入深度学习框架下设计出来的特征提取网络,则有望克服这些挑战从而提升配准效率及准确性[^2]。 ```python import numpy as np def fmcw_signal_processing(frequency_slope, beat_frequency): """ Simulate basic distance calculation using FMCW principles. Parameters: frequency_slope (float): Frequency modulation slope of transmitted signal in Hz/s. beat_frequency (float): Beat frequency obtained from mixing received and transmitted signals in Hz. Returns: float: Estimated target range based on input parameters. """ c = 3e8 # Speed of light in meters per second estimated_distance = ((c * beat_frequency)/(2*frequency_slope)) return estimated_distance example_beat_freq = 5000 # Example value for demonstration purposes only freq_modulation_slope = 1e9 # Hypothetical example parameter set at GHz level changes over time interval T_ramp distance_estimation_result = fmcw_signal_processing(freq_modulation_slope, example_beat_freq) print("Estimated Distance:", round(distance_estimation_result, 2), "meters") ``` 上述代码片段展示了如何依据简单的物理模型估算由给定拍频所对应的目标距离值。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值