AI学习指南深度学习篇-卷积神经网络基础

AI学习指南深度学习篇-卷积神经网络基础

深度学习技术在近年来取得了巨大的发展,并且在各个领域都取得了非常好的效果。其中,卷积神经网络(Convolutional Neural Networks,CNN)作为深度学习的重要分支,在计算机视觉、自然语言处理等领域都取得了非常好的效果。

在本篇博客中,我们将重点介绍CNN中的基本组成部分,包括卷积层、池化层和全连接层,以及解释卷积操作的原理和作用。

卷积层

卷积层是CNN的核心组成部分,它通过卷积操作来提取输入数据中的特征信息。在卷积操作中,卷积核(也称为过滤器)对输入数据进行滑动操作,并计算每个位置上的内积,从而得到输出特征图。

具体来说,假设输入数据的大小为 H × W × D H×W×D H×W×D,其中 H H H表示输入数据的高度, W W W表示输入数据的宽度, D D D表示输入数据的深度(通道数),卷积核的大小为 h × w × D × K h×w×D×K h×w×D×K,其中 h h h表示卷积核的高度, w w w表示卷积核的宽度, D D D表示卷积核的输入通道数, K K K表示卷积核的输出通道数,卷积操作的输出特征图的大小为$ (H-h+1)×(W-w+1)×K$。

下面我们通过一个具体的示例来说明卷积操作的原理。假设输入数据的大小为 4 × 4 × 1 4×4×1 4×4×1,卷积核的大小为 3 × 3 × 1 × 1 3×3×1×1 3×3×1×1,则卷积操作的输出特征图的大小为 2 × 2 × 1 2×2×1 2×2×1

import numpy as np

# 输入数据
input_data = np.array([
    [1, 2, 2, 0],
    [0, 1, 3, 2],
    [3, 1, 2, 3],
    [2, 0, 1, 1]
])

# 卷积核
kernel = np.array([
    [1, 0, 1],
    [1, 1, 1],
    [0, 0, 1]
])

# 卷积操作
def convolution(input_data, kernel):
    H, W = input_data.shape
    h, w = kernel.shape
    output_data = np.zeros((H-h+1, W-w+1))
    for i in range(H-h+1):
        for j in range(W-w+1):
            output_data[i, j] = np.sum(input_data[i:i+h, j:j+w] * kernel)
    return output_data

# 执行卷积操作
output_data = convolution(input_data, kernel)
print(output_data)

上述示例中,我们定义了一个 4 × 4 × 1 4×4×1 4×4×1的输入数据和一个 3 × 3 × 1 × 1 3×3×1×1 3×3×1×1的卷积核,然后执行了卷积操作。最终得到了一个 2 × 2 × 1 2×2×1 2×2×1的输出特征图。

从上述示例可以看出,卷积操作可以有效地提取输入数据的特征信息,因此在深度学习中被广泛应用于图像处理、语音识别等领域。

池化层

池化层是CNN中的另一个重要组成部分,它通过对输入数据进行降采样操作来减少数据的维度。池化操作通常包括最大池化(Max Pooling)和平均池化(Average Pooling)两种方式,其中最大池化是取池化窗口中的最大值作为输出,而平均池化是取池化窗口中的平均值作为输出。

具体来说,假设输入数据的大小为 H × W × D H×W×D H×W×D,池化操作的窗口大小为 h × w h×w h×w,则池化操作的输出特征图的大小为$ \lceil \frac{H}{h} \rceil × \lceil \frac{W}{w} \rceil × D$。

下面我们通过一个具体的示例来说明最大池化操作的原理。假设输入数据的大小为 4 × 4 × 1 4×4×1 4×4×1,池化窗口的大小为 2 × 2 2×2 2×2,则最大池化操作的输出特征图的大小为 2 × 2 × 1 2×2×1 2×2×1

import numpy as np

# 输入数据
input_data = np.array([
    [1, 2, 2, 0],
    [0, 1, 3, 2],
    [3, 1, 2, 3],
    [2, 0, 1, 1]
])

# 最大池化操作
def max_pooling(input_data, pool_size):
    H, W = input_data.shape
    h, w = pool_size
    output_data = np.zeros((H//h, W//w))
    for i in range(0, H, h):
        for j in range(0, W, w):
            output_data[i//h, j//w] = np.max(input_data[i:i+h, j:j+w])
    return output_data

# 执行最大池化操作
output_data = max_pooling(input_data, (2, 2))
print(output_data)

上述示例中,我们定义了一个 4 × 4 × 1 4×4×1 4×4×1的输入数据和池化窗口的大小为 2 × 2 2×2 2×2,然后执行了最大池化操作。最终得到了一个 2 × 2 × 1 2×2×1 2×2×1的输出特征图。

从上述示例可以看出,池化操作可以有效地减少数据的维度,从而降低模型的复杂度,减少过拟合的风险。

全连接层

全连接层是CNN中的最后一层,它将卷积层和池化层得到的特征图展开成一维向量,并通过全连接操作来实现分类或回归等任务。

具体来说,假设输入数据的大小为 H × W × D H×W×D H×W×D,则全连接操作的输入大小为 H × W × D H×W×D H×W×D,输出大小为 K K K,其中 K K K表示类别的个数。

下面我们通过一个具体的示例来说明全连接操作的原理。假设输入数据的大小为 2 × 2 × 1 2×2×1 2×2×1,则全连接操作的输入大小为 4 4 4,输出大小为 2 2 2

import numpy as np

# 输入数据
input_data = np.array([
    [1, 2],
    [3, 0]
])

# 全连接操作
def fully_connected(input_data, weight):
    output_data = np.dot(input_data.flatten(), weight)
    return output_data

# 权重
weight = np.array([0.5, 0.8])

# 执行全连接操作
output_data = fully_connected(input_data, weight)
print(output_data)

上述示例中,我们定义了一个 2 × 2 × 1 2×2×1 2×2×1的输入数据和权重为 0.5 0.5 0.5 0.8 0.8 0.8的全连接层,然后执行了全连接操作。最终得到了一个包含2个元素的输出。

从上述示例可以看出,全连接操作可以将卷积层和池化层得到的特征图转换成一维向量,并通过权重进行线性变换,从而实现分类或回归等任务。

综上所述,卷积神经网络(CNN)包括卷积层、池化层和全连接层等基本组成部分,通过卷积操作和池化操作来提取输入数据的特征信息,并通过全连接操作来实现分类或回归等任务。希望本篇博客可以帮助大家更好地理解CNN的基础知识。

  • 13
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值