力扣之486. 预测赢家

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例 1:

输入:[1, 5, 2]
输出:False
解释:一开始,玩家1可以从1和2中进行选择。 如果他选择 2(或者 1 ),那么玩家 2 可以从1(或者 2 )和 5 中进行选择。如果玩家 2 选择了 5 ,那么玩家 1 则只剩下 1(或者 2 )可选。
所以,玩家 1 的最终分数为1 + 2 = 3,而玩家 2 为 5 。
因此,玩家 1 永远不会成为赢家,返回 False 。

示例 2:

输入:[1, 5, 233, 7]
输出:True
解释:玩家 1 一开始选择 1 。然后玩家 2 必须从 5 和 7 中进行选择。无论玩家2 选择了哪个,玩家 1 都可以选择 233 。
最终,玩家 1(234 分)比玩家 2(12 分)获得更多的分数,所以返回 True,表示玩家 1 可以成为赢家。

/**
 * @param {number[]} nums
 * @return {boolean}
 */
var PredictTheWinner = function (nums) {
    const recursion = (i, j) => {
        if (i == j) {
            return nums[i];
        }
        let chooseI = nums[i] - recursion(i + 1, j),
            chooseJ = nums[j] - recursion(i, j - 1);
        return Math.max(chooseI, chooseJ);
    }
    return recursion(0, nums.length - 1) >= 0;
};

采用了递归,玩家一要赢的话,就看看最后的分数差是否大于0,即在玩的时候采用损失较小选择方法,从结果出发,找到起点。具体的过程交给递归去做就可以。

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页