baseknowledge
zhaosuyuan
这个作者很懒,什么都没留下…
展开
-
yolo中可视化结果指标
yolo中可视化结果指标原创 2024-08-06 15:51:59 · 386 阅读 · 0 评论 -
python 根据url下载图像
python 根据url下载图像。原创 2024-06-20 15:44:48 · 450 阅读 · 0 评论 -
scikit-image安装报错
scikit-image安装报错原创 2024-06-19 10:17:05 · 539 阅读 · 0 评论 -
模型训练优化trick
3.train loss不断下降,test loss趋于不变,过拟合:(1)正则化和降维(2)降低模型复杂度 (3)获取更多数据集、数据增强。翻转,旋转,裁剪,缩放,平移,抖动、Mixup、Cutout、Cutmix、Mosaci等。4.train loss趋于不变,test loss不断下降:数据集有问题,检查数据集。6.train loss不断上升,test loss不断上升:数据清洗,超参设置不当。(7)batch size过小,loss动荡,难以收敛,过大收敛过快陷入局部最优解。原创 2023-07-10 11:04:33 · 159 阅读 · 0 评论 -
卷积层、特征层、输出层、权重关系
卷积层、特征层、输出层、权重关系原创 2023-07-05 16:44:58 · 340 阅读 · 0 评论 -
Roberts、Prewitt、Sobel、 Laplacian边缘检测
【代码】Roberts、Prewitt、Sobel、 Laplacian边缘检测。原创 2022-10-29 14:03:31 · 850 阅读 · 0 评论 -
优化器optimizer,BGD、SGD、MBGD、NAG、AdaGrad、Adadelta、RMSProp、Adam
优化器根据优化点不一样可分为三类:基本的梯度下降法动量优化法自适应学习率优化法可以理解为下山过程中,选择什么方向(梯度),以速度快慢(动量),什么大小的步幅下山(学习率),才会最快达到真正的山底。基本优化法包括:批量梯度下降法BGD、随机梯度下降法SGD、小批量梯度下降法MBGD(SGD)动量优化法包括:标准动量优化法Momentum,牛顿加速度动量优化法NAG自适应学习率包括:AdaGrad、Adadelta、RMSProp、Adam算法梯度下降法最小化目标函数,利用目标函原创 2022-05-28 14:22:27 · 730 阅读 · 0 评论 -
静态训练与动态训练 (Static vs Dynamic Training)
静态训练与动态训练(Static vs Dynamic Training)从广义上讲,训练模型的方式有两种:1.静态训练/离线训练1)一次训练 算法人员的一次模型训练完成,只训练模型一次,然后使用训练后的模型一段时间。2)批量训练 多次不同参数等模型训练,使用批量训练和测试,对其进行迭代,直到达到良好效果。3)仍然需要对输入进行监控4)模型容易过时2.动态训练/在线训练/实时训练1)数据会不断进入系统,通过不断地更新系统将这些数据整合到模型中2)随着时间推移不断为训练数据注入新数据,定期同原创 2021-08-10 14:05:07 · 2175 阅读 · 0 评论