yolo-world使用自己数据集训练

YOLO-World下载:
https://github.com/AILab-CVC/YOLO-World/tree/master
1.数据准备
数据格式COCO格式即可
2.配置文件修改
configs/finetune_coco/yolo_world_v2_l_vlpan_bn_sgd_1e-3_40e_8gpus_finetune_coco.py
(1)
在这里插入图片描述
模型下载路径:
yoloworld:https://hf-mirror.com/wondervictor/YOLO-World
clip-vit-base-patch32:https://hf-mirror.com/openai/clip-vit-base-patch32
(2)
在这里插入图片描述
(3)
在这里插入图片描述
(4)
在这里插入图片描述
3.训练模型
python tools/train.py configs/finetune_coco/yolo_world_v2_l_vlpan_bn_sgd_1e-3_40e_8gpus_finetune_coco.py --work-dir log --amp --resume

### 如何读取 YOLOv5 数据集 YOLOv5 的数据集通常由图像文件及其对应的标签文件组成。标签文件采用 `.txt` 文件存储,每张图片对应一个标签文件。这些标签文件位于特定目录下,并遵循一定的格式。 #### 标签文件结构 对于每一个标注对象,在标签文件中占用一行,其格式如下: - `class_id xc yc w h` 其中: - `class_id`: 类别的索引编号; - `xc`, `yc`: 边界框中心点相对于整幅图宽度和高度的比例位置; - `w`, `h`: 边界框的宽高同样是以比例形式表示[^2]。 #### Python 代码示例:解析YOLOv5标签文件 为了更好地理解如何操作YOLOv5的数据集,下面提供了一段Python代码来展示怎样加载并解释YOLOv5风格的标签文件。 ```python def parse_yolo_label(label_path): boxes = [] with open(label_path, 'r') as f: lines = f.readlines() for line in lines: values = list(map(float, line.strip().split())) class_id, xc, yc, width, height = values[:5] box_info = { "class": int(class_id), "center_x": float(xc), "center_y": float(yc), "width": float(width), "height": float(height) } boxes.append(box_info) return boxes label_file = './path/to/your/image.txt' boxes_data = parse_yolo_label(label_file) print(f"Parsed bounding boxes from {label_file}:") for idx, bbox in enumerate(boxes_data): print(f"Box #{idx + 1}:", bbox) ``` 这段脚本会打开指定路径下的`.txt`文件,逐行读入边界框的信息,并将其转换成易于理解和使用的字典列表形式输出。 #### 图像与标签关联方式 在YOLOv5项目里,一般会在配置文件(`data.yaml`)定义好训练集、验证集以及测试集中各个子集所包含的图像路径集合。而具体的某一张图片与其相应的标签之间的关系,则通过保持相同的文件名(只是扩展不同),比如`image.jpg` 对应着 `image.txt` 来建立联系[^1]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值