FHQ-Treap 简介

FHQ-Treap 数据结构详解
FHQ-Treap 是一种平衡树,介于 Treap 和 Splay 的效率之间,提供分裂、合并、插入、删除等操作。其实现简单,代码对称,易于调试,适用于按值或下标操作。通过分裂和合并实现动态维护树的平衡。

FHQ-treap 即非旋Treap,是一种短小精悍,功能丰富的平衡树。

据说它的效率介于 Treap 和 Splay 之间(可能是我的FHQ常数比较小,跑得比我的Treap还快)。

它可以实现 Splay 可以实现的所有功能,包括平衡树的基本操作和区间翻转操作。

它的实现难度比 Splay 要简单很多,没有 Splay 那么多转来转去的操作,不会令人头晕,而且FHQ代码的对称性良好,易于调试。

有两种 FHQ-Treap,一种是按值为关键字的,一种是按下标为关键字的(适用于区间翻转等操作时)。

FHQ-Treap 类似于Treap,都有一个随机的 key 值,以此来保持树的平衡。

Split (分裂) & merge (合并)

FHQ-Treap 的核心操作为 split\text{split}split (分裂) 和 merge\text{merge}merge (合并)。

split(root,val,x,y)\text{split}(root,val,x,y)split(root,val,x,y) 表示将 rootrootroot 的子树拆分为两半,一半中的值(或下标)都小于等于 valvalval, 一半的值都大于 valvalval

merge(x,y)\text{merge}(x,y)merge(x,y) 表示将 xxx 子树和 yyy 子树合并起来,要保证x中的元素都小于y中的元素。

具体操作都是依靠 split\text{split}splitmerge\text{merge}merge 来实现的。

// 按值为关键字
struct Node
{
   
   
	int l,r; // 左右儿子编号
	int val;// 真实值
	int key;// 随机值
	int size;// 子树大小
}fhq[N];

void pushup(int u){
   
    // 维护其子树大小
	fhq[u].size = fhq[fhq[u].l].size + fhq[fhq[u].r].size + 1;
}

inline void split(int u,int val,int &x,int &y) // 递归实现
{
   
   
	if(!u) {
   
   // 空节点
		x = y = 0;
		return;
	}
	if(fhq[u].val <= val) {
   
    // 点的值大于val,递归其右儿子
		x = u;
		split(fhq[u].r,val,fhq[u].r, y);
	}
	else {
   
    // 点的值小于val,递归其左儿子
		y = u;
		split(fhq[u].l,val,x,fhq[u].l);
	}
	pushup(u); // 维护其子树大小
}
inline in
<think>我们正在讨论FHQTreap(无旋Treap数据结构及其实现。FHQTreap是一种基于Treap(树堆)和分裂合并操作实现的数据结构,它不需要旋转操作,因此称为无旋Treap。它通过两个基本操作split(分裂)和merge(合并)来实现平衡二叉搜索树的各种功能。根据提供的引用,我们可以总结FHQTreap的实现要点:1.**节点结构**:每个节点包含键值(key或val)、随机优先级(priority或rnd)、左右子节点指针以及子树大小(size)。2.**创建节点**:创建一个新节点,初始化其键值、随机优先级(通常用rand()生成)和子树大小(初始为1)。3.**更新节点信息**(push_up或update):更新当前节点的子树大小,即左子树大小+右子树大小+1。4.**分裂(split)**:将一棵Treap按照给定的值或大小拆分成两棵Treap,一棵的所有节点键值小于等于给定值,另一棵大于给定值(或者按照排名拆分)。5.**合并(merge)**:将两棵Treap合并成一棵,这里要求其中一棵的所有节点键值都小于另一棵的所有节点键值。合并时根据节点的随机优先级来决定谁作为根,以保持堆的性质。现在,我们将详细介绍这些操作,并给出代码实现(参考引用中的代码风格,但会进行整合和注释)。###节点定义```cppstructNode{intval;//节点存储的值intl,r;//左右子节点在数组中的下标,0表示空intsize;//以该节点为根的子树大小intpriority;//随机优先级};Nodetr[maxn];//节点数组intcnt=0;//节点计数器```###创建节点```cppintcreate(intv){cnt++;tr[cnt].val=v;tr[cnt].l=tr[cnt].r=0;tr[cnt].size=1;tr[cnt].priority=rand();//生成随机优先级returncnt;}```###更新子树大小```cppvoidupdate(intp){tr[p].size=tr[tr[p].l].size+tr[tr[p].r].size+1;}```###分裂操作分裂操作有两种方式:按值分裂和按大小分裂。这里先介绍按值分裂(将树分裂成两个部分,一部分所有节点值小于等于给定值,另一部分大于给定值)。```cpp//按值分裂:将以p为根的树按值key分裂成x和y两棵树//x树包含所有值<=key的节点,y树包含所有值>key的节点voidsplit(intp,intkey,int&x,int&y){if(!p){x=y=0;return;}if(tr[p].val<=key){x=p;split(tr[p].r,key,tr[x].r,y);update(x);}else{y=p;split(tr[p].l,key,x,tr[y].l);update(y);}}```###合并操作合并操作需要保证x树的所有节点值都小于y树的所有节点值。```cppintmerge(intx,inty){if(!x||!y)returnx|y;//若其中一个为空,返回另一个//按照优先级决定根节点(这里假设优先级小的在上,即大顶堆)if(tr[x].priority>tr[y].priority){tr[x].r=merge(tr[x].r,y);update(x);returnx;}else{tr[y].l=merge(x,tr[y].l);update(y);returny;}}```###基本操作利用分裂和合并,我们可以实现插入、删除等操作:-**插入值v**:先按v分裂成x和y,然后新建一个节点,再合并x和新节点,最后再与y合并。```cppvoidinsert(int&root,intv){intx,y;split(root,v,x,y);//按v分裂root=merge(merge(x,create(v)),y);}```-**删除值v**:先按v分裂成x和z,再对x按v-1分裂成x和y(这样y中所有节点值都等于v?注意,按值分裂时,y树是大于v的,而x树是小于等于v的,所以我们需要再对x树进行一次分裂,得到所有小于v的树和等于v的树)。然后我们删除一个等于v的节点(通常是合并y的左右子树,从而去掉根节点),最后合并。```cppvoidremove(int&root,intv){intx,y,z;split(root,v,x,z);//x:<=v,z:>vsplit(x,v-1,x,y);//x:<=v-1,y:[v](注意,这里y树中所有节点值都等于v?不一定,但至少>=v,而由于第一次分裂x<=v,所以y树的值在[v,v]之间?实际上,按值分裂并不是精确等于,所以我们需要另一种方式:删除一个等于v的节点)//实际上,我们想要将y树中等于v的节点删除一个,但y树中可能包含多个等于v的节点。通常的做法是:如果y非空,我们删除y的根节点(因为分裂后y树中可能包含多个值等于v的节点,但删除一个我们通常删除根节点,然后合并左右子树)if(y){y=merge(tr[y].l,tr[y].r);}root=merge(merge(x,y),z);}```注意:删除操作有多种实现方式,上面的代码是删除一个等于v的节点(如果存在多个,只删一个)。如果希望删除所有等于v的节点,则直接丢弃y树即可(即root=merge(x,z);)。###其他操作FHQTreap还可以实现查询第k大、查询排名、查询前驱后继等操作,这些都可以通过分裂操作和树的性质来实现。###总结FHQTreap通过分裂和合并操作实现了平衡树的基本功能,其核心在于利用随机优先级来保持树的平衡性(近似于二叉搜索树和堆的性质)。由于不使用旋转,代码相对简单,且支持持久化。§§相关问题§§1.FHQTreap的分裂操作有哪几种方式?它们分别适用于什么场景?2.在FHQTreap中,如何实现查询第k大的元素?3.FHQTreap相对于其他平衡树(如AVL树、红黑树)有什么优缺点?4.如何实现FHQTreap的持久化(可持久化)版本?</think>### FHQ Treap 数据结构及其实现 FHQ Treap(无旋Treap)是一种基于**随机优先级**和**分裂-合并操作**实现的平衡二叉搜索树,无需旋转操作即可维持平衡。其核心在于两个基本操作:`split`(分裂)和`merge`(合并),通过组合这两个操作实现插入、删除、查询等所有功能。 #### 一、核心组件 1. **节点结构**: ```cpp struct Node { int val; // 存储的值 int l, r; // 左右子节点指针 int size; // 子树大小 int priority; // 随机优先级 }; ``` - `priority`:随机生成的优先级值,用于维持堆性质(小顶堆或大顶堆) - `size`:子树节点总数,支持按排名操作[^1][^2] 2. **创建节点**: ```cpp int create(int v) { cnt++; tree[cnt].val = v; tree[cnt].l = tree[cnt].r = 0; tree[cnt].size = 1; tree[cnt].priority = rand(); // 生成随机优先级 return cnt; } ``` - 初始化子树大小为1,左右子节点为空[^2] 3. **更新子树大小**: ```cpp void update(int p) { tr[p].size = tr[tr[p].l].size + tr[tr[p].r].size + 1; } ``` - 递归计算左右子树大小之和再加1[^1][^3] --- #### 二、核心操作 1. **分裂(Split)** 将树按给定值 `key` 拆分为两棵子树: ```cpp void split(int p, int key, int &x, int &y) { if (!p) { x = y = 0; return; } if (tr[p].val <= key) { x = p; split(tr[p].r, key, tr[x].r, y); // 递归分裂右子树 update(x); } else { y = p; split(tr[p].l, key, x, tr[y].l); // 递归分裂左子树 update(y); } } ``` - `x` 树:所有节点值 ≤ `key` - `y` 树:所有节点值 > `key` - 时间复杂度:$O(\log n)$ 2. **合并(Merge)** 合并两棵树 `x` 和 `y`(需满足 `x` 所有值 < `y` 所有值): ```cpp int merge(int x, int y) { if (!x || !y) return x | y; // 任一为空则返回非空树 if (tr[x].priority < tr[y].priority) { tr[x].r = merge(tr[x].r, y); // x优先级更高,合并到右子树 update(x); return x; } else { tr[y].l = merge(x, tr[y].l); // y优先级更高,合并到左子树 update(y); return y; } } ``` - 按优先级决定父子关系(小顶堆) - 时间复杂度:$O(\log n)$ --- #### 三、衍生操作 1. **插入** 通过分裂-合并实现: ```cpp void insert(int &root, int v) { int x, y; split(root, v, x, y); // 按v分裂 root = merge(merge(x, create(v)), y); // 合并x→新节点→y } ``` 2. **删除** 删除值为 `v` 的节点: ```cpp void remove(int &root, int v) { int x, y, z; split(root, v, x, z); // 分裂出≤v的树x split(x, v-1, x, y); // 从x中分裂出<v的树x和==v的树y if (y) y = merge(tr[y].l, tr[y].r); // 合并y的左右子树(删除根) root = merge(merge(x, y), z); // 重组 } ``` 3. **查询第k大** 利用子树大小定位: ```cpp int kth(int p, int k) { while (p) { int left_size = tr[tr[p].l].size; if (k <= left_size) p = tr[p].l; else if (k == left_size + 1) return tr[p].val; else { k -= left_size + 1; p = tr[p].r; } } return -1; // 未找到 } ``` --- #### 四、特性分析 | **特性** | **说明** | |----------------|--------------------------------------------------------------------------| | **平衡性** | 随机优先级使树高期望为 $O(\log n)$ | | **无需旋转** | 所有操作基于分裂/合并,避免旋转的复杂性 | | **功能强大** | 支持分裂/合并,天然支持区间操作 | | **代码简洁** | 核心操作仅需约20行代码 | | **持久化支持** | 可低成本实现可持久化版本 | > **关键优势**:FHQ Treap 通过分裂操作可直接提取任意区间子树,使其在**区间操作**(如区间翻转、区间求和)上比传统平衡树更高效[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值