二维几何——最小矩形面积覆盖,直线切凸多边形:

博客探讨了二维几何中的一个核心问题,如何找到能覆盖某个凸多边形的最小矩形,并涉及直线如何切割这一多边形的理论与方法。
摘要由CSDN通过智能技术生成

也未经过题目测试。。。。

//AB X AC
double cross(Point A,Point B,Point C)
{
   
    return (B-A)^(C-A);
}

//AB*AC
double dot(Point A,Point B,Point C)
{
   
    return (B-A)*(C-A);
}

//最小矩形面积覆盖
// A 必须是凸包 (而且是逆时针顺序)
double min_rectangle_cover(polygon A)
{
   
    //特判A.n<3的情况
    if(A.n<3) return 0.0;
    A.p[A.n]=A.p[0];
    double ans=-1;
    int r=1,p=1,q;
    for(int i=0;i<A.n;i++)
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值