Educational Codeforces Round 81 (Rated for Div. 2) D. Same GCDs (容斥)

题目链接

题面:
在这里插入图片描述

题意:
给定两个整数 a a a m m m
询问满足 g c d ( a , m ) = g c d ( a + x , m ) gcd(a,m)=gcd(a+x,m) gcd(a,m)=gcd(a+x,m) 0 ≤ x < m 0\le x<m 0x<m 的不同 x x x 的个数。

题解:
我们设 g = g c d ( a , m ) g=gcd(a,m) g=gcd(a,m),那么我们有 g c d ( k 1 ∗ g + x , k 2 ∗ g ) = g gcd(k1*g+x,k2*g)=g gcd(k1g+x,k2g)=g,即 x = k 3 ∗ g x=k3*g x=k3g 0 ≤ k 3 ∗ g < m 0\le k3*g<m 0k3g<m 0 ≤ k 3 < m / g = k 2 0\le k3<m/g=k2 0k3<m/g=k2

g c d ( k 1 ∗ g + k 3 ∗ g , k 2 ∗ g ) = g gcd(k1*g+k3*g,k2*g)=g gcd(k1g+k3g,k2g)=g ,有 g c d ( k 1 + k 3 , k 2 ) = 1 gcd(k1+k3,k2)=1 gcd(k1+k3,k2)=1 k 1 > = 1 k1>=1 k1>=1

g c d ( k 1 + k 3 , k 2 ) = 1 gcd(k1+k3,k2)=1 gcd(k1+k3,k2)=1 等价于 g c d ( ( k 1 + k 3 )   m o d   k 2 , k 2 ) = 1 gcd((k1+k3)\ mod\ k2,k2)=1 gcd((k1+k3) mod k2,k2)=1,又 k 3 ∈ [ 0 , k 2 ] k3\in[0,k2] k3[0,k2]

实际上就是求 [ 1 , k 2 ] [1,k2] [1,k2] 中有多少个数与 k 2 k2 k2 互质。

很明显欧拉函数求解即可。

我们还可以用容斥来求。

我们将 k 2 k2 k2 的因子从小到大排序,排序后,其因子的关系形成一张 D A G DAG DAG

我们设 c n t [ i ] cnt[i] cnt[i] [ 1 , k 2 ] [1,k2] [1,k2] 中的数 与 k 2 k2 k2 g c d gcd gcd k 2 k2 k2 i i i 个因子的数的个数。

初始化时,我们将 c n t [ i ] cnt[i] cnt[i] 初始化为 [ 1 , k 2 ] [1,k2] [1,k2] 中的数 与 k 2 k2 k2 g c d gcd gcd 大于等于 k 2 k2 k2 i i i 个因子的数的个数。

那么 c n t [ 1 ] cnt[1] cnt[1] 即为所求 g c d = 1 gcd=1 gcd=1

那么很容易得到一个 O ( s u m ( f a c ) 2 ) O(sum(fac)^2) O(sum(fac)2) 的容斥算法。

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<unordered_set>
#include<set>
#include<ctime>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define len(x)  (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define fhead(x) for(int i=head[(x)];i;i=nt[i])
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const double alpha=0.75;
const int mod=998244353;
const double eps=1e-8;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=100100;
const int maxm=100100;
const int maxp=100100;
const int up=1100;

ll fac[maxn],cnt[maxn],tot=0;

ll gcd(ll a,ll b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}

void gao(ll n)
{
    tot=0;
    for(ll i=1;i*i<=n;i++)
    {
        if(n%i) continue;
        fac[++tot]=i;
        if(i*i!=n) fac[++tot]=n/i;
    }
}

int main(void)
{
    int tt;
    scanf("%d",&tt);
    while(tt--)
    {
        ll a,m;
        scanf("%lld%lld",&a,&m);
        ll g=gcd(a,m);
        a/=g,m/=g;
        gao(m);
        sort(fac+1,fac+tot+1);
        for(int i=1;i<=tot;i++)
            cnt[i]=m/fac[i];
        for(int i=tot;i>=1;i--)
        {
            for(int j=i+1;j<=tot;j++)
                if(fac[j]%fac[i]==0)
                    cnt[i]-=cnt[j];
        }
        printf("%lld\n",cnt[1]);
    }
    return 0;
}


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页