2020中国大学生程序设计竞赛(CCPC) - 网络选拔赛----HDU--6900、Residual Polynomial(分治、FFT)

题目链接

题面:
在这里插入图片描述

题意:
给定函数: f 1 ( x ) = ∑ i = 0 n a i x i f_1(x)=\sum_{i=0}^na_ix^i f1(x)=i=0naixi

给定 b 2 , b 3 , . . . , b n b_2,b_3,...,b_n b2,b3,...,bn c 2 , c 3 , . . . , c n c_2,c_3,...,c_n c2,c3,...,cn

对于 i ∈ [ 2 , n ] , f i ( x ) = b i ( f i − 1 ( x ) ) ′ + c i f i − 1 ( x ) i\in[2,n],f_i(x)=b_i(f_{i-1}(x))'+c_if_{i-1}(x) i[2,n]fi(x)=bi(fi1(x))+cifi1(x)

题解:
我们把每个 f i f_i fi 写成一列。
f i , j f_{i,j} fi,j 表示 f i f_i fi j j j 次项的次数。其中 f 1 , j = a j f_{1,j}=a_j f1,j=aj

[ f 1 , 0 f 2 , 0 f 3 , 0 ⋯ f n , 0 f 1 , 1 f 2 , 1 f 3 , 1 ⋯ f n , 1 f 1 , 2 f 2 , 2 f 3 , 2 ⋯ f n , 2 ⋮ ⋮ ⋮ ⋮ ⋮ f 1 , n f 2 , n f 3 , n ⋯ f n , n ] \begin{bmatrix}&f_{1,0}&f_{2,0}&f_{3,0}&\cdots&f_{n,0}&\\ &f_{1,1}&f_{2,1}&f_{3,1}&\cdots&f_{n,1}&\\&f_{1,2}&f_{2,2}&f_{3,2}&\cdots&f_{n,2}&\\&\vdots&\vdots&\vdots&\vdots&\vdots&\\&f_{1,n}&f_{2,n}&f_{3,n}&\cdots&f_{n,n}&\end{bmatrix} f1,0f1,1f1,2f1,nf2,0f2,1f2,2f2,nf3,0f3,1f3,2f3,nfn,0fn,1fn,2fn,n

考虑 f i , j f_{i,j} fi,j 的转移,发现存在两种转移状态。

①、 f i , j ∗ c i + 1 − > f i + 1 , j , 其 中 i < n f_{i,j}*c_{i+1}->f_{i+1,j},其中 i<n fi,jci+1>fi+1,ji<n
②、 f i , j ∗ ( j ∗ b i + 1 ) − > f i + 1 , j − 1 , 其 中 i < n , j > 0 f_{i,j}*(j*b_{i+1})->f_{i+1,j-1},其中 i<n,j>0 fi,j(jbi+1)>fi+1,j1i<nj>0

我们发现,相当于在上方的矩阵中,每个状态 f i , j 向 f i + 1 , j 和 f i + 1 , j − 1 f_{i,j}向f_{i+1,j}和f_{i+1,j-1} fi,jfi+1,jfi+1,j1 连接了一条边。

我们考虑 f 1 , i f_{1,i} f1,i 对于 f n , j f_{n,j} fn,j 的贡献,其中 i ≥ j i\ge j ij

可以发现 f 1 , i f_{1,i} f1,i 对于 f n , j f_{n,j} fn,j 的贡献就是从 f 1 , i f_{1,i} f1,i f n , j f_{n,j} fn,j 的路径。

那么这个贡献 a n s ( f 1 , i − > f n , j ) = f 1 , i ∗ ∑ ( ∏ p a t h ) ans(f_{1,i}->f_{n,j})=f_{1,i}*\sum(\prod path) ans(f1,i>fn,j)=f1,i(path)

我们先不考虑②中 j ∗ b i + 1 中 的 j j*b_{i+1}中的 j jbi+1j,那么对于转移 f 1 , i − > f n , j f_{1,i}->f_{n,j} f1,i>fn,j,就是对于 x ∈ [ 2 , n ] x\in[2,n] x[2,n] 选择 b x b_x bx 或者 c x c_x cx,其中 b x b_x bx选择了 i − j i-j ij 个, c x c_x cx 选择了 n − 1 − ( i − j ) n-1-(i-j) n1(ij) 个,然后把所有方案相加。

我们设 F ( k ) F(k) F(k) 为选 k k k b x b_x bx ,选 n − 1 − k n-1-k n1k c x c_x cx 的方案和。

我们设 F ( l , r , k ) F(l,r,k) F(l,r,k) 为在区间 [ l , r ] [l,r] [l,r] 中选 k k k b x b_x bx 方案和。

那么 F ( l , r , k ) = ∑ i + j = k F ( l , m i d , i ) ∗ F ( m i d + 1 , r , j ) F(l,r,k)=\sum_{i+j=k}F(l,mid,i)*F(mid+1,r,j) F(l,r,k)=i+j=kF(l,mid,i)F(mid+1,r,j)

分治+卷积时间复杂度为 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)
 
 

现在考虑②中的 j j j 的贡献,我们令 g j = f n , j g_j=f_{n,j} gj=fn,j f i = f 1 , i f_i=f_{1,i} fi=f1,i

那么有 g j = f n , j = ∑ i − k = j F ( k ) ∗ f i ∗ i ! j ! g_j=f_{n,j}=\sum_{i-k=j}F(k)*f_{i}*\frac{i!}{j!} gj=fn,j=ik=jF(k)fij!i!

现在考虑怎么求解 g j = i n v ( j ! ) ∗ ∑ i − k = j F ( k ) ∗ f i ∗ i ! g_j=inv(j!)*\sum_{i-k=j}F(k)*f_{i}*i! gj=inv(j!)ik=jF(k)fii!

我们设 h ( n − i ) = f i ∗ i ! h(n-i)=f_{i}*i! h(ni)=fii!

那么有: g j = i n v ( j ! ) ∗ ∑ i − k = j F ( k ) ∗ h n − i g_j=inv(j!)*\sum_{i-k=j}F(k)*h_{n-i} gj=inv(j!)ik=jF(k)hni

我们令 i = n − i i=n-i i=ni 则有:

g j = i n v ( j ! ) ∗ ∑ i + k = n − j F ( k ) ∗ h i g_j=inv(j!)*\sum_{i+k=n-j}F(k)*h_{i} gj=inv(j!)i+k=njF(k)hi

我们设 p ( n − j ) = ∑ i + k = n − j F ( k ) ∗ h i p(n-j)=\sum_{i+k=n-j}F(k)*h_{i} p(nj)=i+k=njF(k)hi

那么 g j = i n v ( j ! ) ∗ p ( n − j ) g_j=inv(j!)*p(n-j) gj=inv(j!)p(nj)

即做一次 F F T FFT FFT 即可。

时间复杂度 O ( n l o g 2 n + n l o g n ) = O ( n l o g 2 n ) O(nlog^2n+nlogn)=O(nlog^2n) O(nlog2n+nlogn)=O(nlog2n)

#pragma GCC optimize(2)
#pragma GCC optimize("Ofast","inline","-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<set>
namespace onlyzhao
{
    #define ui unsigned int
    #define ll long long
    #define llu unsigned ll
    #define ld long double
    #define pr make_pair
    #define pb push_back
    #define lc (cnt<<1)
    #define rc (cnt<<1|1)
    #define len(x)  (t[(x)].r-t[(x)].l+1)
    #define tmid ((l+r)>>1)
    #define fhead(x) for(int i=head[(x)];i;i=nt[i])
    #define max(x,y) ((x)>(y)?(x):(y))
    #define min(x,y) ((x)>(y)?(y):(x))
    #define one(n) for(int i=1;i<=(n);i++)
    #define rone(n) for(int i=(n);i>=1;i--)
    #define fone(i,x,n) for(int i=(x);i<=(n);i++)
    #define frone(i,n,x) for(int i=(n);i>=(x);i--)
    #define fonk(i,x,n,k) for(int i=(x);i<=(n);i+=(k))
    #define fronk(i,n,x,k) for(int i=(n);i>=(x);i-=(k))
    #define two(n,m) for(int i=1;i<=(n);i++) for(int j=1;j<=(m);j++)
    #define ftwo(i,n,j,m) for(int i=1;i<=(n);i++) for(int j=1;j<=(m);j++)
    #define fvc(vc) for(int i=0;i<vc.size();i++)
    #define frvc(vc) for(int i=vc.size()-1;i>=0;i--)
    #define forvc(i,vc) for(int i=0;i<vc.size();i++)
    #define forrvc(i,vc) for(int i=vc.size()-1;i>=0;i--)
    #define cls(a) memset(a,0,sizeof(a))
    #define cls1(a) memset(a,-1,sizeof(a))
    #define clsmax(a) memset(a,0x3f,sizeof(a))
    #define clsmin(a) memset(a,0x80,sizeof(a))
    #define cln(a,num) memset(a,0,sizeof(a[0])*num)
    #define cln1(a,num) memset(a,-1,sizeof(a[0])*num)
    #define clnmax(a,num) memset(a,0x3f,sizeof(a[0])*num)
    #define clnmin(a,num) memset(a,0x80,sizeof(a[0])*num)
    #define sc(x) scanf("%d",&x)
    #define sc2(x,y) scanf("%d%d",&x,&y)
    #define sc3(x,y,z) scanf("%d%d%d",&x,&y,&z)
    #define scl(x) scanf("%lld",&x)
    #define scl2(x,y) scanf("%lld%lld",&x,&y)
    #define scl3(x,y,z) scanf("%lld%lld%lld",&x,&y,&z)
    #define scf(x) scanf("%lf",&x)
    #define scf2(x,y) scanf("%lf%lf",&x,&y)
    #define scf3(x,y,z) scanf("%lf%lf%lf",&x,&y,&z)
    #define scs(x) scanf("%s",x+1)
    #define scs0(x) scanf("%s",x)
    #define scline(x) scanf("%[^\n]%*c",x+1)
    #define scline0(x) scanf("%[^\n]%*c",x)
    #define pcc(x) putchar(x)
    #define pc(x) printf("%d\n",x)
    #define pc2(x,y) printf("%d %d\n",x,y)
    #define pc3(x,y,z) printf("%d %d %d\n",x,y,z)
    #define pck(x) printf("%d ",x)
    #define pcl(x) printf("%lld\n",x)
    #define pcl2(x,y) printf("%lld %lld\n",x,y)
    #define pcl3(x,y,z) printf("%lld %lld %d\n",x,y,z)
    #define pclk(x) printf("%lld ",x)
    #define pcf2(x) printf("%.2f\n",x)
    #define pcf6(x) printf("%.6f\n",x)
    #define pcf8(x) printf("%.8f\n",x)
    #define pcs(x) printf("%s\n",x+1)
    #define pcs0(x) printf("%s\n",x)
    #define pcline(x) printf("%d**********\n",x)
    #define casett int tt;sc(tt);int pp=0;while(tt--)

    char buffer[100001],*S,*T;
    inline char Get_Char()
    {
        if (S==T)
        {
            T=(S=buffer)+fread(buffer,1,100001,stdin);
            if (S==T) return EOF;
        }
        return *S++;
    }
    inline int read()
    {
        char c;int re=0;
        for(c=Get_Char();c<'0'||c>'9';c=Get_Char());
        while(c>='0'&&c<='9') re=re*10+(c-'0'),c=Get_Char();
        return re;
    }
};
using namespace onlyzhao;
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=998244353;
const int p=mod;
const double eps=1e-8;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=400100;
const int maxm=100100;
const int maxp=100100;
const int up=100100;
const int g=3;

int A[maxn],B[maxn];
vector<int>a,b,c;
int fac[maxn],inv[maxn];
int fi[maxn];
int mypow(int a,int b)
{
    if(b<0) return mypow(mypow(a,p-2),-b);
    int ans=1;
    while(b)
    {
        if(b&1) ans=1ll*ans*a%p;
        a=1ll*a*a%p;
        b>>=1;
    }
    return ans%p;
}

void init(void)
{
    fac[0]=1;
    for(int i=1;i<maxn;i++)
        fac[i]=1ll*fac[i-1]*i%p;
    inv[maxn-1]=mypow(fac[maxn-1],p-2);
    for(int i=maxn-2;i>=0;i--)
        inv[i]=1ll*inv[i+1]*(i+1)%p;
}

int init(int n,int m)
{
    int len=1,cnt=0;
    while(len<=n+m) len<<=1,cnt++;
    for(int i=0;i<len;i++)
        fi[i]=((fi[i>>1]>>1)|((i&1)<<(cnt-1)));
    return len;
}

void ntt(int *x,int len,int f)
{
    for(int i=0;i<len;i++)
        if(i<fi[i]) swap(x[i],x[fi[i]]);

    for(int i=1;i<len;i<<=1)
    {
        int r=i<<1;
        int wn=mypow(g,f*(p-1)/r);
        for(int j=0;j<len;j+=r)
        {
            int w=1;
            for(int k=0;k<i;k++)
            {
                int xx=x[j+k],yy=1ll*w*x[j+i+k]%p;
                x[j+k]=(xx+yy)%p;
                x[j+i+k]=(xx-yy+p)%p;
                w=1ll*w*wn%p;
            }
        }
    }
    if(f==-1)
    {
        int invn=mypow(len,p-2);
        for(int i=0;i<len;i++)
            x[i]=1ll*x[i]*invn%p;
    }
}

vector<int> dontt(const vector<int>&a,const vector<int>&b)
{
    //小范围暴力,大范围卷积会快很多
    int n=a.size()-1,m=b.size()-1;
    vector<int>vc(n+m+1);
    if(n<=50&&m<=50)
    {
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=m;j++)
                vc[i+j]=(vc[i+j]+1ll*a[i]*b[j])%p;
        }
        return vc;
    }
    int len=init(n,m);
    for(int i=0;i<len;i++)
    {
        if(i<=n) A[i]=a[i];
        else A[i]=0;;
        if(i<=m) B[i]=b[i];
        else B[i]=0;
    }
    ntt(A,len,1);
    ntt(B,len,1);
    for(int i=0;i<len;i++)
        A[i]=1ll*A[i]*B[i]%p;
    ntt(A,len,-1);
    for(int i=0;i<=n+m;i++)
        vc[i]=A[i];
    return vc;
}

vector<int> sol(int l,int r)
{
    if(l==r)
    {
        vector<int>vc;
        vc.pb(c[l]);
        vc.pb(b[l]);
        return vc;
    }

    return dontt(sol(l,tmid),sol(tmid+1,r));
}

int main(void)
{
    init();
    int tt;
    scanf("%d",&tt);
    while(tt--)
    {
        int n;
        scanf("%d",&n);
        a=vector<int>(n+1),b=vector<int>(n-1),c=vector<int>(n-1);
        for(int i=0;i<=n;i++)
            scanf("%d",&a[i]);
        for(int i=0;i<=n-2;i++)
            scanf("%d",&b[i]);
        for(int i=0;i<=n-2;i++)
            scanf("%d",&c[i]);
        vector<int>vc=sol(0,n-2);
        for(int i=0;i<a.size();i++)
            a[i]=1ll*a[i]*fac[i]%p;
        reverse(a.begin(),a.end());
        vector<int>ans=dontt(vc,a);
        for(int i=0;i<=n;i++)
        {
            if(i!=0) putchar(' ');
            printf("%lld",1ll*ans[n-i]*inv[i]%p);
        }
        putchar('\n');
    }
    return 0;

}


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页