2020CCPC网络赛 Residual Polynomial 指数型母函数+多项式 (HDU 6900)

1 篇文章 0 订阅
1 篇文章 0 订阅

题解

f i ( x ) = b i f i − 1 ′ ( x ) + c i f i − 1 ( x ) f_i(x) = b_i f_{i-1}^{′}(x) + c_i f_{i−1}(x) fi(x)=bifi1(x)+cifi1(x)
这个形式,有点像是能提出一个系数然后递推
就是这里的 f i − 1 ′ ( x ) f_{i-1}^{′}(x) fi1(x)怎么处理是个问题
因为题目给的 f ( x ) f(x) f(x)是一个普通型母函数,所以求导的话, ( a i x i ) ′ = i a i x i − 1 (a_ix^i)^{′}=ia_ix^{i - 1} (aixi)=iaixi1
其实是所有系数都左移并且乘上当前 x x x的幂次,没法处理
考虑指数型母函数 g ( x ) = ∑ i = 0 ∝ t i x i i ! g(x)=\displaystyle\sum_{i=0}^{\propto}t_i \frac{x^i}{i!} g(x)=i=0tii!xi,如果对 g ( x ) g(x) g(x)求导,则有 g ′ ( x ) = g ( x ) x g^{′}(x)=\frac{g(x)}{x} g(x)=xg(x)
所以我们先将 f 1 ( x ) f_1(x) f1(x)转化为指数型生成函数,即
f 1 ( x ) = ∑ i = 0 n a i x i = ∑ i = 0 n t i x i i ! f_1(x)=\displaystyle\sum_{i=0}^{n}a_ix^i=\displaystyle\sum_{i=0}^{n}t_i \frac{x^i}{i!} f1(x)=i=0naixi=i=0ntii!xi
那么就有
f i ( x ) = b i f i − 1 ′ ( x ) + c i f i − 1 ( x ) = b i f i − 1 ( x ) x + c i f i − 1 ( x ) = ( c i + b i x − 1 ) f i − 1 ( x ) = ∏ j = 2 n ( c j + b j x − 1 ) f 1 ( x ) \begin{aligned} f_i(x) & = b_i f_{i - 1}^{′}(x) + c_i f_{i−1}(x) \\ & = b_i \frac{f_{i - 1}(x)}{x}+c_i f_{i−1}(x) \\ & = \left( c_i + b_i x ^{-1} \right) f_{i−1}(x) \\ & = \prod_{j = 2}^{n} \left( c_j + b_j x ^{-1} \right) f_1(x) \end{aligned} fi(x)=bifi1(x)+cifi1(x)=bixfi1(x)+cifi1(x)=(ci+bix1)fi1(x)=j=2n(cj+bjx1)f1(x)
可以看到最后的形式就是好几个 a + b x − 1 a+bx^{-1} a+bx1形式的多项式累乘,再乘上 f 1 ( x ) f_1(x) f1(x)
对于前面的 ∏ \prod ,直接计算要 n n n次乘法,考虑分治乘法,这样只需要 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)
具体细节看代码部分
赛后交T了,神奇神奇,思路看看就行

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10;

ll qpow(ll a, ll b, ll mod) {
    ll res = 1;
    while (b) {
        if (b & 1) res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

const ll mod = 998244353;
const ll G = 3;
const ll invG = qpow(G, mod - 2, mod);
int tr[N];

int getLen(int n) {
    int len = 1;
    while (len < (n << 1)) len <<= 1;
    for (int i = 0; i < len; i++) tr[i] = (tr[i >> 1] >> 1) | (i & 1 ? len >> 1 : 0);
    return len;
}

void NTT(ll *A, int len, int type) {
    for (int i = 0; i < len; i++) if (i < tr[i]) swap(A[i], A[tr[i]]);
    for (int i = 2; i <= len; i <<= 1) {
        int mid = i / 2;
        ll Wn = qpow(type == 1 ? G : invG, (mod - 1) / i, mod);
        for (int k = 0; k < len; k += i) {
            ll w = 1;
            for (int l = k; l < k + mid; l++) {
                ll t = w * A[l + mid] % mod;
                A[l + mid] = (A[l] - t + mod) % mod;
                A[l] = (A[l] + t) % mod;
                w = w * Wn % mod;
            }
        }
    }
    if (type == -1) {
        ll invn = qpow(len, mod - 2, mod);
        for (int i = 0; i < len; i++)
            A[i] = A[i] * invn % mod;
    }
}


void solve(ll *f1, ll *f2, ll *g, int l, int r) {//分治乘法
    if (l == r) return (void) (g[(l - 1) * 2] = f1[l], g[(l - 1) * 2 + 1] = f2[l]);
    int mid = (l + r) / 2;
    solve(f1, f2, g, l, mid);
    solve(f1, f2, g, mid + 1, r);
    static ll a[N], b[N];
    int len1 = mid - l + 2, len2 = r - mid + 1;
    for (int i = 0; i < len1; i++) a[i] = g[(l - 1) * 2 + i];
    for (int i = 0; i < len2; i++) b[i] = g[mid * 2 + i];
    int n = r - l + 2, len = getLen(n);
    NTT(a, len, 1), NTT(b, len, 1);
    for (int i = 0; i < len; i++) a[i] = a[i] * b[i] % mod;
    NTT(a, len, -1);
    for (int i = 0; i < n; i++) g[(l - 1) * 2 + i] = a[i];
    for (int i = n; i < len; i++) g[(l - 1) * 2 + i] = 0;
    for (int i = 0; i < len; i++) a[i] = b[i] = 0;

}

int n;
ll a[N], b[N], c[N], f[N], g[N];

ll fac[N], ifac[N];
void init(int siz) {
    fac[0] = 1;
    for (int i = 1; i <= siz; i++)
        fac[i] = i * fac[i - 1] % mod;
    ifac[siz] = qpow(fac[siz], mod - 2, mod);
    for (int i = siz; i >= 1; i--) ifac[i - 1] = ifac[i] * i % mod;
}

int main() {
#ifdef ACM_LOCAL
    freopen("input.in", "r", stdin);
    freopen("output.out", "w", stdout);
#endif
    init(1e5);
    int T; scanf("%d", &T);
    while (T--) {
        scanf("%d", &n);
        for (int i = 0; i <= (n * 10); i++) a[i] = b[i] = c[i] = f[i] = g[i] = 0;
        for (int i = 0; i <= n; i++) {
            scanf("%lld", &a[i]);
            //将普通型母函数转化为指数型生成函数, 即系数乘上i!
            a[i] = a[i] * fac[i] % mod;
        }
        for (int i = 1; i < n; i++) scanf("%lld", &b[i]);
        for (int i = 1; i < n; i++) scanf("%lld", &c[i]);
        solve(c, b, f, 1, n - 1);//分治乘法
        //这里x的幂次是0, -1, -2, -3, ..., -(n - 2), -(n - 1)
        //所以最后我要swap一下, 就变成-(n - 1), -(n - 2), ..., 2, 1, 0
        for (int i = 0; i < n / 2; i++) swap(f[i], f[n - i - 1]);
        int len = getLen(n + 1);
        //再跟f_1(x)做一下NTT
        NTT(f, len, 1), NTT(a, len, 1);
        for (int i = 0; i < len; i++) g[i] = a[i] * f[i] % mod;
        NTT(g, len, -1);
        //最后这里将指数型母函数还原为普通型母函数, 即系数乘上i!的逆元
        //此外这里取g[i + n - 1]项是因为我们前面算出来的幂是负的,我右移了n - 1位, 现在还原回去
        for (int i = 0; i <= n; i++)
            printf("%lld%s", g[i + n - 1] * ifac[i] % mod, i == n ? "\n" : " ");

    }
    return 0;
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值