一、chomp!游戏:
1。
有一个n * m的棋盘,棋盘的每一个格子用(x,y)表示,最左上角是(1,1)
每次可以拿走一个方格,并拿走该方格右边与下边的所有方格,谁拿到(1,1),谁败。
除了n=m=1先手败,其余先手胜。
三维的除了(1,1,1)先手败,其余的先手胜。
2。
桌子上有n个数字,1–n。
两人轮流选择一个桌子上的数x,然后将x与x的约数都拿走,拿走最后一个数的人胜出。
先手必胜。
二、策梅洛定理:
策梅洛定理,表明在二人参与的游戏/博弈中,如果满足:
--------游戏的步骤数有限
--------信息完备(二人都了解游戏规则,了解游戏曾经所发生过的信息)
--------不会产生平局
--------确定性(游戏中不会加入随机因素)
则先行一方有必胜策略,或者后行一方有必胜策略。
三、有限偏序集上的chomp游戏:
Chomp游戏可以推广到在任意一个存在最小元 a 的有限偏序集(S,≤)上:两名游戏者轮流选择S中的元素 x ,移走 x 以及所有 S 中比 x 大的元素。失败者是被迫选择最小元 a 的玩家。
如果 (S,≤) 有最大元素 b ,那么在偏序集上的Chomp游戏存在一个获胜策略.