flink算子合并

import json
import re
import logging
import sys
from collections import Counter

from pyflink.datastream import DataStream, StreamExecutionEnvironment
from pyflink.datastream.functions import RuntimeContext, FlatMapFunction, MapFunction
from pyflink.common.typeinfo import Types

s_env = StreamExecutionEnvironment.get_execution_environment()
data = DataStream(s_env._j_stream_execution_environment.socketTextStream('192.168.137.201', 8899))
s_env.set_parallelism(1)

# data.print()
def get_key():
    return '999'


class LogEvent:
    world = None

    def __init__(self, world):
        self.world = world
        # self.count = count

    def to_dict(self):
        return {
            "world": str(self.world)
            # "count": str(self.count)

        }


class MyMapFunction(FlatMapFunction):
    def open(self, runtime_context: RuntimeContext):
        pass

    def flat_map(self, raw_message):
        raw_message = raw_message.upper()
        dict1 = {}
        dict1['value'] = raw_message +'!!!'
        yield dict1


data.flat_map(MyMapFunction(), output_type=Types.MAP(Types.STRING(), Types.STRING())).set_parallelism(4).print().set_parallelism(8)
s_env.execute('data')

//并行度一样算子合并

import json
import re
import logging
import sys
from collections import Counter

from pyflink.datastream import DataStream, StreamExecutionEnvironment
from pyflink.datastream.functions import RuntimeContext, FlatMapFunction, MapFunction
from pyflink.common.typeinfo import Types

s_env = StreamExecutionEnvironment.get_execution_environment()
data = DataStream(s_env._j_stream_execution_environment.socketTextStream('192.168.137.201', 8899))
s_env.set_parallelism(1)

# data.print()
def get_key():
    return '999'


class LogEvent:
    world = None

    def __init__(self, world):
        self.world = world
        # self.count = count

    def to_dict(self):
        return {
            "world": str(self.world)
            # "count": str(self.count)

        }


class MyMapFunction(FlatMapFunction):
    def open(self, runtime_context: RuntimeContext):
        pass

    def flat_map(self, raw_message):
        raw_message = raw_message.upper()
        dict1 = {}
        dict1['value'] = raw_message +'!!!'
        yield dict1


data.flat_map(MyMapFunction(), output_type=Types.MAP(Types.STRING(), Types.STRING())).set_parallelism(8).print().set_parallelism(8)
s_env.execute('data')

Flink 中的算子可以分为三类:转换算子(Transformation)、数据源算子(Source)、数据汇算子(Sink)。 1. 转换算子 转换算子用于对数据进行转换和处理,常用的算子有: - map:对每条数据进行一定的处理,将其转换为另一种形式输出。 - flatMap:与 map 类似,但是可以输出多个结果。 - filter:对数据进行过滤,只保留符合条件的数据。 - keyBy:按照指定的 key 进行分组,将具有相同 key 的数据分到同一个分区中。 - reduce:对分组后的数据进行聚合计算,输出一个结果。 - sum/min/max:对分组后的数据进行求和/最大值/最小值计算,输出一个结果。 - window:将数据按照时间窗口进行分组,进行聚合计算。 - join:将两个流的数据按照指定的条件进行连接,输出一个新的流。 - union:将两个流合并成一个流。 - coMap/coFlatMap:将两个流的数据进行合并处理,输出一个新的流。 2. 数据源算子 数据源算子用于从外部数据源中读取数据,常用的算子有: - socketTextStream:从指定的 Socket 地址读取文本数据。 - readTextFile:从指定的文件路径读取文本数据。 - readCsvFile:从指定的 CSV 文件路径读取 CSV 数据。 - addSource:从自定义数据源中读取数据。 3. 数据汇算子 数据汇算子用于将数据写入到外部系统中,常用的算子有: - print:将数据打印到控制台。 - writeAsText:将数据以文本形式写入到指定的文件路径。 - writeAsCsv:将数据以 CSV 形式写入到指定的文件路径。 - addSink:将数据写入到自定义的数据汇中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scan724

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值