flink自定义函数

前言

在很多情况下,尽管flink提供了丰富的转换算子API可供开发者对数据进行各自处理,比如 map(),filter()等,但在实际使用的时候仍然不能满足所有的场景,这时候,就需要开发人员基于常用的转换算子的基础上,做一些自定义函数的处理

1、来看一个常用的操作

原始待读取的文件

核心代码

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FilterFunc {

    public static void main(String[] args) throws Ex
Flink 中的自定义函数是实现自己的业务逻辑的一种方式。常用的自定义函数包括 MapFunction、FlatMapFunctionFilterFunction、ReduceFunction 等。下面以 MapFunction 为例,介绍如何自定义函数。 假设我们有一个输入数据集合,数据格式为 (String, Int),表示一个字符串和一个整数。现在我们想要对这个数据集合进行处理,将字符串中所有的小写字母转换成大写字母,并将整数加上 1。可以通过自定义 MapFunction 来实现: ```java public class MyMapFunction implements MapFunction<Tuple2<String, Integer>, Tuple2<String, Integer>> { @Override public Tuple2<String, Integer> map(Tuple2<String, Integer> value) throws Exception { String str = value.f0.toUpperCase(); int num = value.f1 + 1; return new Tuple2<>(str, num); } } ``` 上面的代码中,MyMapFunction 实现了 MapFunction 接口,并重写了 map 方法。在 map 方法中,我们将输入的 Tuple2 中的字符串转换成大写字母,并将整数加上 1,最后返回一个新的 Tuple2 对象。 使用自定义函数时,可以通过以下方式进行调用: ```java DataStream<Tuple2<String, Integer>> result = input.map(new MyMapFunction()); ``` 其中,input 表示输入的数据流,MyMapFunction 表示自定义的函数。 在 Flink 中,除了上述提到的 MapFunction、FlatMapFunctionFilterFunction、ReduceFunction 等常用函数之外,还可以自定义 WindowFunction、KeySelector、ProcessFunction、SinkFunction 等函数。这些函数的使用方式与上述介绍的方式类似,只需要实现对应的接口并重写对应的方法即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逆风飞翔的小叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值