PyTorch官方教程
PyTorch Tutorial
https://pytorch.org/tutorials/
K5niper
这个作者很懒,什么都没留下…
展开
-
PyTorch官方教程 - Getting Started - 迁移学习
迁移学习(TRANSFER LEARNING TUTORIAL) 迁移学习训练网络 微调网络权值(finetuning the convnet):(1)使用预训练网络初始化网络权值;(2)训练网络。 特征提取器:(1)丢弃预训练网络输出层,冻结预训练网络其余各层权值;(2)添加网络输出层,随机初始化权值,训练输出层。 %matplotlib inline import torch i...翻译 2019-09-06 10:05:25 · 449 阅读 · 0 评论 -
PyTorch官方教程 - Getting Started - 数据加载和处理
DATA LOADING AND PROCESSING TUTORIAL scikit-image pandas import os import pandas as pd from skimage import io, transform import numpy as np import matplotlib.pyplot as plt import torch from torch.u...翻译 2019-08-08 14:43:18 · 352 阅读 · 0 评论 -
PyTorch官方教程 - Getting Started - 60分钟快速入门 - 数据并行处理
OPTIONAL: DATA PARALLELISM DataParallel:使用多GPU device = torch.device("cuda:0") model.to(device) mytensor = my_tensor.to(device) 多GPU运行forward、backward model = nn.DataParallel(model) 导入、参数 import tor...翻译 2019-08-07 10:49:01 · 222 阅读 · 0 评论 -
PyTorch官方教程 - Getting Started - 60分钟快速入门 - 训练分类器
TRAINING A CLASSIFIER 数据加载 torchvision torchvision.datasets torch.utils.data.DataLoader 训练图像分类器 使用torchvision加载及标准化CIFAR10训练、测试数据集 定义卷积神经网络 定义损失函数 训练网络 测试网络 1. 加载及标准化CIFAR10训练、测试数据集 import torch im...翻译 2019-07-10 09:58:34 · 300 阅读 · 0 评论 -
PyTorch官方教程 - Getting Started - 60分钟快速入门 - 神经网络
NEURAL NETWORKS 每个nn.Module需包含网络结构和forward(input)方法。 forward(input)方法返回输出 训练神经网络一般步骤: 定义神经网络、可学习参数(权值) 遍历输入数据集 前向传播 计算损失(输出与真实值距离) 反向传播梯度 更新网络权值,weight=weight−learning_rate∗gradientweight = weight -...翻译 2019-07-10 09:52:05 · 1609 阅读 · 2 评论 -
PyTorch官方教程 - Getting Started - 60分钟快速入门 - 自动微分
AUTOGRAD: AUTOMATIC DIFFERENTIATION autograd程序包:对张量的所有运算自动微分。 import torch 张量 torch.Tensor 训练: 追踪张量: .requires_grad = True .backward() .grad 停止追踪: .detach() 评估(evaluating) 禁止追踪: with torch....翻译 2019-06-26 10:24:19 · 495 阅读 · 0 评论 -
PyTorch官方教程 - Getting Started - 60分钟快速入门 - 张量
WHAT IS PYTORCH? import torch import numpy as np 入门 张量(Tensors) 创建5×35 \times 35×3未初始化矩阵 x = torch.empty(5, 3) print(x) tensor([[8.4490e-39, 1.1112e-38, 1.0194e-38], [9.0919e-39, 8.4490e-39,...翻译 2019-06-26 10:20:15 · 263 阅读 · 0 评论