数理统计
山抹微云654
计算机数据挖掘、NN、AI、NLP
展开
-
Gibbs Sampling(一):随机数产生方法介绍 & Monte Carlo方法
转自:http://blog.sina.com.cn/s/blog_5033f3b40101jfqu.html本系列是针对gibbs采样在LDA中的应用而学习总结的四个部分,但并不着重强调其在LDA中的应用,而是作为一个应用的普通例子来general的介绍Gibbs sampling的前前后后,主要参考是Sheldon M.Ross的《Simulation》(Fourth转载 2015-09-12 14:04:38 · 3158 阅读 · 0 评论 -
Reducing the Dimensionality of Data with Neural Networks
转自:http://blog.csdn.net/scyer123/article/details/460091852006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton发表的这篇文章引起了深度学习的狂潮,使得深度学习死灰复燃。1、在数据降维中,可以利用多层神经网络。梯度下降法是传统的参数训练方法,但是当初始条件接近于最优解时,梯度下降方法得到转载 2015-10-15 16:02:54 · 530 阅读 · 0 评论 -
使用LFM(Latent factor model)隐语义模型进行Top-N推荐
转自:http://blog.csdn.net/litoupu/article/details/16944359原文地址:http://blog.csdn.net/harryhuang1990/article/details/9924377最近在拜读项亮博士的《推荐系统实践》,系统的学习一下推荐系统的相关知识。今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一转载 2015-10-15 16:32:06 · 700 阅读 · 0 评论 -
正交矩阵、正规矩阵和酉矩阵
转自:http://blog.csdn.net/alec1987/article/details/7414450正交矩阵、正规矩阵和酉矩阵在数学中,正规矩阵 是与自己的共轭转置交换的复系数方块矩阵,也就是说, 满足其中 是 的共轭转置。如果 是实系数矩阵,那么条件简化为 其中 是 的转置矩阵。矩阵的正规性是检验矩阵是否可对角化的一个简便方法:转载 2015-10-15 16:00:25 · 30889 阅读 · 2 评论 -
机器学习(machine learning)之AdaBoost算法
转自:http://blog.csdn.net/sunboyiris/article/details/38318191转自:http://blog.csdn.net/haidao2009/article/details/7514787 浅谈 Adaboost 算法 机器学习是利用一些方法来使机器实现人的学习行为,以便获取新的知识或技能,重新组织已转载 2015-10-15 16:30:30 · 491 阅读 · 0 评论 -
隐马尔可夫模型(HMM)攻略
转自:http://blog.csdn.net/likelet/article/details/7056068隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值。平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点转载 2015-10-15 16:25:22 · 573 阅读 · 0 评论 -
从最大似然到EM算法浅解
转自:http://blog.csdn.net/zouxy09/article/details/8537620从最大似然到EM算法浅解zouxy09@qq.comhttp://blog.csdn.net/zouxy09 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是转载 2015-10-15 16:23:40 · 340 阅读 · 0 评论 -
矩阵特征值分解与奇异值分解含义解析及应用
转自:http://blog.csdn.net/xiahouzuoxin/article/details/41118351此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接。特征值与特征向量的几何意义矩阵的乘法是什么,别只告诉我只是“前一个矩阵的行乘以后一个矩阵的列”,还会一点的可能还会说“前一个矩阵的列数等于后一个矩阵的行转载 2015-10-15 16:16:32 · 610 阅读 · 0 评论 -
通俗理解LDA主题模型
转自:http://blog.csdn.net/v_july_v/article/details/41209515 通俗理解LDA主题模型0 前言 印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记转载 2015-10-15 16:13:58 · 13046 阅读 · 0 评论 -
Gibbs Sampling(三):补充
转自:http://blog.sina.com.cn/s/blog_5033f3b40101jgmv.html因上篇太长,这里本文完全续上文:Gibbs Sampling(二):Gibbs Sampling总结2.【关于文中积分到期望的转化】基本上,任何的概率、积分、和求和都是possible表达成期望的形式的。 概率形式: P(转载 2015-09-12 14:07:56 · 375 阅读 · 0 评论 -
Gibbs Sampling(二):Gibbs Sampling总结
转自:http://blog.sina.com.cn/s/blog_5033f3b40101jgmi.html1. Introduction Markov Chain Monte Carlo(MCMC) techniques like Gibbs sampling provide a principled way to approximate the value of转载 2015-09-12 14:06:44 · 545 阅读 · 0 评论 -
RAdam 优化理解
注:本篇blog旨在对文章RAdam: on the variance of the adaptive learning rate and beyond 进行理解引言x123p1/31/31/3 由上述简单的均匀分布可知,E(x) = 2, D(x) = 2 / 3x123p1/41/21/4 由上述简...原创 2019-08-24 21:56:03 · 2307 阅读 · 0 评论