转自:http://blog.sina.com.cn/s/blog_5033f3b40101jgmv.html
因上篇太长,这里本文完全续上文:Gibbs
2.【关于文中积分到期望的转化】
基本上,任何的概率、积分、和求和都是possible表达成期望的形式的。
【关于MonteCarlo方法优劣的衡量】
【关于Monte Carlo采样中的分布选择】
在本文及之前的例子中,我们都是选择服从[0,1]之间的均匀分布的样本点进行采样求均值最终求积分的,然而是不是也可以选其他的呢?当然可以。请看下面的例子。
E[g(w)] = ∫[0,5]g(w)p(w)dw
= (1/5)∫[0,5]g(w) dw
= (1/5)∫[0,1]g(w) dw
= (1/5) ∫[0,1]g(x) dx
故有:∫[0,1]g(x) dx = 5∙ E[g(w)]。
这样一来,在采用Monte Carlo方法,得到采样点后得到的估计是
∫[0,1]g(x) dx = (5/n)∙∑g(wi)
我们看到这样的过程也可以得到对所求积分的估计,但是。。太浪费了。。。,因为采样的时候是在[0,5]的范围内采样,而在这个区间内大部分的点[1,5],区间内的点都是没意义的,可以不用采的,这就说明选择哪个分布还是有很大影响的,不一定对结果影响,但是时间复杂度会有影响。这就引出了重要性采样(好像扯远了。。不过这一篇本来就是闲扯,就再扯扯吧。。)。
【Important Sampling重要性采样】
重要性采样是要解决上面所提到的选什么分布的问题。
假如h(x)是在A上有定义,即有:
那么对于关于g(x)在这个区域上的积分可以表达为:
然后得到的Monte Carlo estimator就是:
我们在【关于MonteCarlo方法优劣的衡量】的部分有说道衡量各个Monte Carlo estimator优劣的主要就是看他们的方差,如果能够选择一个合适的h(x)使得方差最小,那么可以说h(x)就算是找到了。经过证明,当采样函数h(x)与g(x)是比例关系时,方差最小。总结起来,一个合适的好的importance sampling function h(x)应当具备以下特点:
参考文献:
1.Gibbs Sampling for the Unintiated;
2.Monte Carlo Methods and Important Sampling