python进阶—OpenCV之视频分析


本篇开始学习视频分析,视频分析主要是在视频中对目标进行跟踪,上来就是Meanshift and Camshift算法。

Meanshift

Meanshift算法简单介绍:任意选定的初始迭代点,画一个半径记为H的蓝色圆,将其内所有的点与圆心相连,组成一个向量集,然后对此向量集进行向量相加,相加的结果如黑色向量所示,其终点指向下图所示的蓝色点,则下一次迭代以该蓝色点为圆心,H为半径画圆,然后求这个圆内以圆心为起点所有向量的和。如此迭代下去,圆的中心点为收敛于一个固定的点,也就是概率密度最大的地方。所以 均值漂移算法本质上是一种基于梯度的优化算法。

Meanshift的opencv实现:首先需要在视频画面中选取一个目标,画出初始边框,计算直方图,然后通过直方图反向投影,用于Meanshift计算。计算直方图时,仅考虑Hue视角。为防止光线较暗造成的错误,可以用cv.inRange()函数滤除。

  • 函数原型: retval, window = cv.meanShift( probImage, window, criteria )
  • probImage:概率分布图像,可以是目标直方图的反向投影
  • Window:初始搜索窗口,可以是使用Rect定义ROI
  • Criteria:确定窗口搜索停止的准则,OpenCV实现该算法时定义了两个停止条件:迭代次数达到设置的最大值;窗口中心的漂移值小于某个设定的限值。
import numpy as np
import cv2 as cv
cap = cv.VideoCapture('slow.flv')
# take first frame of the video
ret,frame = cap.read()
# setup initial location of window
r,h,c,w = 250,90,400,125  # simply hardcoded the values
track_window = (c,r,w,h)
# set up the ROI for tracking
roi = frame[r:r+h, c:c+w]
hsv_roi =  cv.cvtColor(roi, cv.COLOR_BGR2HSV)
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
while(1):
    ret ,frame = cap.read()
    if ret == True:
        hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
        dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
        # apply meanshift to get the new location
        ret, track_window = cv.meanShift(dst, track_window, term_crit)
        # Draw it on image
        x,y,w,h = track_window
        img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
        cv.imshow('img2',img2)
        k = cv.waitKey(60) & 0xff
        if k == 27:
            break
        else:
            cv.imwrite(chr(k)+".jpg",img2)
    else
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值