文章目录
本篇开始学习视频分析,视频分析主要是在视频中对目标进行跟踪,上来就是Meanshift and Camshift算法。
Meanshift
Meanshift算法简单介绍:任意选定的初始迭代点,画一个半径记为H的蓝色圆,将其内所有的点与圆心相连,组成一个向量集,然后对此向量集进行向量相加,相加的结果如黑色向量所示,其终点指向下图所示的蓝色点,则下一次迭代以该蓝色点为圆心,H为半径画圆,然后求这个圆内以圆心为起点所有向量的和。如此迭代下去,圆的中心点为收敛于一个固定的点,也就是概率密度最大的地方。所以 均值漂移算法本质上是一种基于梯度的优化算法。
Meanshift的opencv实现:首先需要在视频画面中选取一个目标,画出初始边框,计算直方图,然后通过直方图反向投影,用于Meanshift计算。计算直方图时,仅考虑Hue视角。为防止光线较暗造成的错误,可以用cv.inRange()函数滤除。
- 函数原型: retval, window = cv.meanShift( probImage, window, criteria )
- probImage:概率分布图像,可以是目标直方图的反向投影
- Window:初始搜索窗口,可以是使用Rect定义ROI
- Criteria:确定窗口搜索停止的准则,OpenCV实现该算法时定义了两个停止条件:迭代次数达到设置的最大值;窗口中心的漂移值小于某个设定的限值。
import numpy as np
import cv2 as cv
cap = cv.VideoCapture('slow.flv')
# take first frame of the video
ret,frame = cap.read()
# setup initial location of window
r,h,c,w = 250,90,400,125 # simply hardcoded the values
track_window = (c,r,w,h)
# set up the ROI for tracking
roi = frame[r:r+h, c:c+w]
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
while(1):
ret ,frame = cap.read()
if ret == True:
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# apply meanshift to get the new location
ret, track_window = cv.meanShift(dst, track_window, term_crit)
# Draw it on image
x,y,w,h = track_window
img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
cv.imshow('img2',img2)
k = cv.waitKey(60) & 0xff
if k == 27:
break
else:
cv.imwrite(chr(k)+".jpg",img2)
else