Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View Graph convolutional Networks 笔记
作者:Junkai Sun, Junbo Zhang, Qiaofei Li, Xiuwen Yi, Yu Zheng
来源:arXiv:1903.07789v2 [cs.CV] 17 Jul 2020
1 论文背景与动机
先前的工作主要集中在预测规则的网格化区域的人群流动。然而,城市实际上被道路网络隔开,非常不规则。预测城市不规则区域的人群流动,对于交通控制、风险评估和公共安全意义重大。
人群流量预测问题是一个时空图(STG)预测问题,不规则区域为图节点,区域间过渡流用来构造边。但由于不同区域之间的相互作用和空间相关性,不规则区域人群流量预测比较困难,受到许多因素影响:
1)STG不同顶点之间的相互作用和空间相关性。
2)不同时间间隔之间的多重时间相关性:邻近性、周期性、趋势;
3)复杂的外部因素(天气、事件)和元特征(一天的时间,周末/工作日)
本文提出利用空间图卷积建立一个多视角图卷积网络(MVGCN),用于人群流量预测问题,其中不同视角能捕捉到上述不同的因素。本文使用四个数据集来评估MVGCN,结果表明,MVGCN方法优于最先进的方法。
2论文创新
2.1提出一种GCN变体,它可以捕捉不同节点之间的空间相关性。设计多视图融合模块,将不同视图的多个潜在表示融合在一起。多视图融合有效地利用不同视图基于其特性的输出。
2.2 提出了一个综合框架,包括数据预处理、地图分割和地图聚类、过渡流构建图、GCN预测人群流量。
3论文模型
该框架由数据准备和模型学习两个阶段组成:
- 数据准备阶段:基于预测的目标时间获取全局信息(比如,如以前的时间步骤中的气象数据和天气预报。Iext and Imeta,),基于时间依赖(考虑两类时段(日,周),两类趋势(月,季),选取相应的近期,日,周,月,季的时间步骤为重点 时间步骤,构建五个视图。)选择关键的 key timesteps( 通过选择这些关键的时间步骤,MVGCN可以捕获多种类型的时间属性。);然后将它们全部喂入到第二阶段进行模型训练。
- 模型学习阶段:1)GCNs用STG结构信息学习(每个时间视图)空间相关性和相互作用,输出
;2)FNNs捕获全局信息,如外部因素和元特征,
;3)Multi-view fusion(多视角融合)集成GCNs和FNNs的输出;4)Post-net, 即FNN, 使用激活函数将潜在表示投影获得预测值,输出
。
人群流量预测问题——STG预测问题:
节点——不规则区域;边——流出和区域之间的过渡流。
Inflow-- 给定时间间隔内其他区域进入某区域的人群的总流量;
Outflow--给定时间内离开某区域到其他区域的人群的总流量。