在智能交通系统(ITS)中,用已有交通数据准确、实时预测未来短期交通流量,对城市交通规划、交通管理和控制很重要。短期交通流预测是要预测某条道路在未来几分钟或几小时交通流的变化情况(流量、速度等)。 交通流量预测方法可分为三类:统计方法模型、传统机器学习模型和深度学习模型。
一、统计方法模型
1.1 HA模型(History Average Model)
Stephanedes 于1981 年将HA模型应用于城市交通控制系统。 算法定义 ![]()
V(new):某路段在一定时间间隔内的新的交通流量;V(old):该路段在一定时间间隔内的旧的交通 流量;V为最近观察到的该路段在一定时间间隔内的交通流量;α为平滑系数。
[1]J. Liu and W. Guan, “Asummary of traffic flow forecasting methods,”J. Highway Transp.Res.Develop., vol. 21, no.3, pp.82–85, Mar.2004.
HA优缺点:
优点:算法简单 ,参数可用最小二乘法 (LS)在线估计,可以在一定程度内解决不同时间、不同时段里的交通流变化问题。
缺点:静态预测,没有考虑当前交通 状态变化所带来的影响,不能反映动态交通流的不确定性与非线性特性,无法克服随机干扰因素的影响,不能应对交通系统中的突发事件,如事故。
1.2 Time-Series Model
按时间顺序排列的观测值的集合称为时间序列。利用时间序列观测值之间的依赖关系和相关性,可进行动态预测。
ARIM

本文总结了短时交通流量预测的方法,包括统计方法模型(如HA和时间序列模型)、传统机器学习模型(如KNN和SVR)以及深度学习模型(如ST-ResNet、DMVST-Net和ASTGCN),探讨了各类模型的优缺点及其在智能交通系统中的应用。
最低0.47元/天 解锁文章
3105

被折叠的 条评论
为什么被折叠?



