题目描述
A 点有一个过河卒,需要走到目标 B 点。卒行走规则:可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如下图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。例如下图 C 点可以控制 9 个点(图中的P1,P2 … P8 和 C)。卒不能通过对方马的控制点。 棋盘用坐标表示,现给定A 点位置为(0,0)B 点位置为(n,m)(n,m 为不超过 20 的整数),马的位置为C(X,Y)(约定: C点与A点不重叠,与B点也不重叠)。要求你计算出卒从 A 点能够到达 B 点的路径的条数。
输入格式
B点的坐标(n,m)以及对方马的坐标(X,Y)(马的坐标一定在棋盘范围内,但要注意,可能落在边界的轴上)
样例输入
6 6 3 2
样例输出
17
AC代码
#include <bits/stdc++.h>
using namespace std;
int n,m,m1,n1,ans;
int a[10001][10001];
void dfs(int x,int y){
if((x+1==n&&y==m)||(x==n&&y+1==m)){
ans++;
return;
}
if(x<n&&a[x+1][y]==0){
dfs(x+1,y);
}
if(y<m&&a[x][y+1]==0){
dfs(x,y+1);
}
}
int main(){
cin>>n>>m>>n1>>m1;
a[n1][m1]=1;
if(n1-2>=0&&m1-1>=0){
a[n1-2][m1-1]=1;
}
if(n1-1>=0&&m1-2>=0){
a[n1-1][m1-2]=1;
}
if(n1-2>=0&&m1+1<=m){
a[n1-2][m1+1]=1;
}
if(n1-1>=0&&m1+2<=m){
a[n1-1][m1+2]=1;
}
if(n1+2<=n&&m1-1>=0){
a[n1+2][m1-1]=1;
}
if(n1+1<=n&&m1-2>=0){
a[n1+1][m1-2]=1;
}
a[n1+2][m1+1]=1;
a[n1+1][m1+2]=1;
dfs(0,0);
cout<<ans;
}