cf437D The Child and Zoo

cf 同时被 3 个专栏收录
47 篇文章 0 订阅
10 篇文章 0 订阅
26 篇文章 0 订阅
D. The Child and Zoo
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains ai animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo from any other area using the roads.

Our child is very smart. Imagine the child want to go from area p to area q. Firstly he considers all the simple routes from p to q. For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q). Finally, the child chooses one of the routes for which he writes down the value f(p, q).

After the child has visited the zoo, he thinks about the question: what is the average value of f(p, q) for all pairs p, q (p ≠ q)? Can you answer his question?

Input

The first line contains two integers n and m (2 ≤ n ≤ 1050 ≤ m ≤ 105). The second line contains n integers: a1, a2, ..., an (0 ≤ ai ≤ 105). Then follow m lines, each line contains two integers xi and yi (1 ≤ xi, yi ≤ nxi ≠ yi), denoting the road between areas xi and yi.

All roads are bidirectional, each pair of areas is connected by at most one road.

Output

Output a real number — the value of .

The answer will be considered correct if its relative or absolute error doesn't exceed 10 - 4.

Sample test(s)
input
4 3
10 20 30 40
1 3
2 3
4 3
output
16.666667
input
3 3
10 20 30
1 2
2 3
3 1
output
13.333333
input
7 8
40 20 10 30 20 50 40
1 2
2 3
3 4
4 5
5 6
6 7
1 4
5 7
output
18.571429
Note

Consider the first sample. There are 12 possible situations:

  • p = 1, q = 3, f(p, q) = 10.
  • p = 2, q = 3, f(p, q) = 20.
  • p = 4, q = 3, f(p, q) = 30.
  • p = 1, q = 2, f(p, q) = 10.
  • p = 2, q = 4, f(p, q) = 20.
  • p = 4, q = 1, f(p, q) = 10.

Another 6 cases are symmetrical to the above. The average is .

Consider the second sample. There are 6 possible situations:

  • p = 1, q = 2, f(p, q) = 10.
  • p = 2, q = 3, f(p, q) = 20.
  • p = 1, q = 3, f(p, q) = 10.

Another 3 cases are symmetrical to the above. The average is .

在鸿巨大的指导下才有了思路……orzlwh

首先把所有的点按权从大到小排序,然后顺序加入图中。对于一个新插入的点,可能有很多连出去的边,如果边的另一端已经在图中,就把它用并查集并起来,可以证明这些联通快之间的p就是新加入的点。然后统计答案。

黄巨大的题解:http://hzwer.com/3332.html

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
struct sth
{
    int v,bh;
}p[100010];
int n,m;
int sz,to[200010],pre[200010],last[100010];
int fa[100010],sum[100010];
bool mark[100010];
double ans;
void Ins(int a,int b)
{
     sz++;to[sz]=b;pre[sz]=last[a];last[a]=sz;
}
inline bool comp(sth a,sth b)
{
     return a.v>b.v;
}
int getfa(int x)
{
    if(fa[x]==0) return x;
    return fa[x]=getfa(fa[x]);
}
int main()
{
    int i,j,x,y,a,b;
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++)
    {
        scanf("%d",&p[i].v);
        p[i].bh=i;sum[i]=1;
    }
    for(i=1;i<=m;i++)
    {
        scanf("%d%d",&a,&b);
        Ins(a,b);Ins(b,a);
    }
    sort(p+1,p+1+n,comp);
    for(i=1;i<=n;i++)
    {
       x=p[i].bh;
       for(j=last[x];j;j=pre[j])
       if(mark[to[j]])
       {
          y=getfa(to[j]);
          a=getfa(x);
          if(a!=y)
          {
             ans+=(long long)sum[y]*sum[a]*p[i].v;
             sum[y]+=sum[a];
             fa[a]=y;
          }
       }
       mark[x]=1;
    }
    ans/=n*1.0;
    ans/=(n-1)*1.0;
    ans*=2.0;
    printf("%.12lf\n",ans);
    return 0;
}


  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
<p> <span style="font-size:14px;color:#337FE5;">【为什么学爬虫?】</span> </p> <p> <span style="font-size:14px;">       1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!</span> </p> <p> <span style="font-size:14px;">       2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站</span> </p> <p> <br /> </p> <span style="font-size:14px;color:#337FE5;">【课程设计】</span> <p class="ql-long-10663260"> <span> </span> </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: </p> <ol> <li class="" style="font-size:11pt;color:#494949;"> 网络请求:模拟浏览器的行为从网上抓取数据。 </li> <li class="" style="font-size:11pt;color:#494949;"> 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 </li> <li class="" style="font-size:11pt;color:#494949;"> 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 </li> </ol> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: </p> <ol> <li class="" style="font-size:11pt;color:#494949;"> 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 </li> <li class="" style="font-size:11pt;color:#494949;"> Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 </li> </ol> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> <br /> </p> <p> <br /> </p> <p> <span style="font-size:14px;background-color:#FFFFFF;color:#337FE5;">【课程服务】</span> </p> <p> <span style="font-size:14px;">专属付费社群+定期答疑</span> </p> <p> <br /> </p> <p class="ql-long-24357476"> <span style="font-size:16px;"><br /> </span> </p> <p> <br /> </p> <p class="ql-long-24357476"> <span style="font-size:16px;"></span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

打赏

zhb1997

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值