cf479E Riding in a Lift

cf 同时被 2 个专栏收录
47 篇文章 0 订阅
48 篇文章 0 订阅

E. Riding in a Lift
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 50001 ≤ k ≤ 50001 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2)(1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  3. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.


唉卡在B题1个小时……最后发现C是sb题10分钟秒了

dp:f[i][j]表示走i步到j的方案数

f[i][j]=Σf[i-1][k] | k能到j

n^2k的时间效率会T,但是发现所有的k是一个连续的区间,所以我们可以用前缀和存所有f[i-1][k]的状态,然后O(1)递推

还可以更快

注意到b把1到n的区间分成两半,而且从a开始走一定只能到达a所在的一半,所以可以再优化。期望能缩掉一半复杂度

(其实我是因为2500w状态+取模很虚所以想出这不靠谱的优化)

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
#define mod 1000000007
using namespace std;
int n,a,b,k,L,R;
LL f[5010][5010];
LL sum[5010],tot;
inline LL read()
{
    LL x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int main()
{
	n=read();a=read();b=read();k=read();
	if (a<b)
	{
		L=1;R=b-1;
	}else 
	{
		L=b+1;R=n;
	}
	f[0][a]=1;
	for (int i=a;i<=n;i++)sum[i]=1;
	for (int i=1;i<=k;i++)
	{
		for (int j=L;j<=R;j++)
		  {
		  	int des=(b+j)>>1;
		  	if (j<b)
		  	{
		  		while(b-des<=des-j) des--;
				while(b-(des+1)>(des+1)-j) des++;
				f[i][j]=(sum[des]-f[i-1][j]+mod)%mod;
		  	}else
		  	{ 
		  		while (des-b<=j-des) des++;
		  		while ((des-1)-b>j-(des-1)) des--;
		  		f[i][j]=(sum[n]-sum[des-1]-f[i-1][j]+mod)%mod;
		  	}
		  }
		sum[0]=0;
		for (int ll=1;ll<=n;ll++)
		  sum[ll]=sum[ll-1]+f[i][ll];
	}
	for (int i=L;i<=R;i++)
	  tot+=f[k][i];
	printf("%lld\n",tot%mod);
}

展开阅读全文
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
<p> <span style="font-size:14px;color:#337FE5;">【为什么学爬虫?】</span> </p> <p> <span style="font-size:14px;">       1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!</span> </p> <p> <span style="font-size:14px;">       2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站</span> </p> <p> <br /> </p> <span style="font-size:14px;color:#337FE5;">【课程设计】</span> <p class="ql-long-10663260"> <span> </span> </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: </p> <ol> <li class="" style="font-size:11pt;color:#494949;"> 网络请求:模拟浏览器的行为从网上抓取数据。 </li> <li class="" style="font-size:11pt;color:#494949;"> 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 </li> <li class="" style="font-size:11pt;color:#494949;"> 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 </li> </ol> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: </p> <ol> <li class="" style="font-size:11pt;color:#494949;"> 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 </li> <li class="" style="font-size:11pt;color:#494949;"> Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 </li> </ol> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> <br /> </p> <p> <br /> </p> <p> <span style="font-size:14px;background-color:#FFFFFF;color:#337FE5;">【课程服务】</span> </p> <p> <span style="font-size:14px;">专属付费社群+定期答疑</span> </p> <p> <br /> </p> <p class="ql-long-24357476"> <span style="font-size:16px;"><br /> </span> </p> <p> <br /> </p> <p class="ql-long-24357476"> <span style="font-size:16px;"></span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

打赏

zhb1997

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值