题目描述
有一天,琪琪想乘坐公交车去拜访她的一位朋友。
由于琪琪非常容易晕车,所以她想尽快到达朋友家。
现在给定你一张城市交通路线图,上面包含城市的公交站台以及公交线路的具体分布。
已知城市中共包含 n 个车站(编号1~n)以及 m 条公交线路。
每条公交线路都是 单向的,从一个车站出发直接到达另一个车站,两个车站之间可能存在多条公交线路。
琪琪的朋友住在 s 号车站附近。
琪琪可以在任何车站选择换乘其它公共汽车。
请找出琪琪到达她的朋友家(附近的公交车站)需要花费的最少时间。
输入格式
输入包含多组测试数据。
每组测试数据第一行包含三个整数 n,m,s,分别表示车站数量,公交线路数量以及朋友家附近车站的编号。
接下来 m 行,每行包含三个整数 p,q,t,表示存在一条线路从车站 p 到达车站 q,用时为 t。
接下来一行,包含一个整数 w,表示琪琪家附近共有 w 个车站,她可以在这 w 个车站中选择一个车站作为始发站。
再一行,包含 w 个整数,表示琪琪家附近的 w 个车站的编号。
输出格式
每个测试数据输出一个整数作为结果,表示所需花费的最少时间。
如果无法达到朋友家的车站,则输出 -1。
每个结果占一行。
数据范围
n≤1000,m≤20000,
1≤s≤n,
0<w<n,
0<t≤1000
输入样例:
5 8 5
1 2 2
1 5 3
1 3 4
2 4 7
2 5 6
2 3 5
3 5 1
4 5 1
2
2 3
4 3 4
1 2 3
1 3 4
2 3 2
1
1
输出样例:
1
-1
思路:本题为多起点最短路问题,多起点到某一个点(或多个点)的最短路,最暴力的思路是遍历所有起点依次求出每个起点到终点的最短路求出最小值,而最常见的优化是建立一个虚拟原点,将原点到所有起点的路径设为0,求出原点到终点的最短路就是所有起点到终点的最短路径
AC代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
const int N = 1010, M = 21010; //注意此处边数应该设置为21010,因为虚拟远点到起点的边数也应计算
int h[N], w[M], e[M], ne[M], idx, y;//假设y是虚拟原点
int n, m, s, k, dist[N];
bool st[N];//spfa算法中判重数组
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int spfa(int start)
{
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st);
dist[start] = 0;
queue<int> q;
q.push(start);
while(q.size())
{
int t = q.front();
q.pop();
st[t] = false;
for(int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if(!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return dist[s];
}
int main(void)
{
while(cin >> n >> m >> s)
{
idx = 0;
memset(w, 0, sizeof w);
memset(e, 0, sizeof e);
memset(ne, 0, sizeof ne);
memset(h, -1, sizeof h);
for(int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
cin >> k;
int res = 0x3f3f3f3f;
for(int i = 0; i < k; i++)
{
int start;
cin >> start;
add(y, start, 0);
}
res = spfa(y);
if(res == 0x3f3f3f3f) cout << -1 << endl;
else cout << res << endl;
}
return 0;
}