抽象模型
给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树。
求增加的边的权值总和最小是多少。
树中的所有边权均为整数,且新加的所有边权也必须为整数。
输入格式
第一行包含整数t,表示共有t组测试数据。
对于每组测试数据,第一行包含整数N。
接下来N-1行,每行三个整数X,Y,Z,表示X节点与Y节点之间存在一条边,长度为Z。
输出格式
每组数据输出一个整数,表示权值总和最小值。
每个结果占一行。
数据范围
1 ≤ N ≤ 6000
1 ≤ Z ≤ 100
输入样例
2
3
1 2 2
1 3 3
4
1 2 3
2 3 4
3 4 5
输出样例
4
17
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 6010;
int n, p[N], s[N];
struct node {
int a, b, w;
}e[N];
bool cmp(node a, node b)
{
return a.w < b.w;
}
int find(int x)
{
if(x != p[x]) p[x] = find(p[x]);
return p[x];
}
int main(void)
{
int T;
cin >> T;
while(T--)
{
cin >> n;
for(int i = 0; i < n - 1; i++)
{
int a, b, w;
cin >> a >> b >> w;
e[i] = {a, b, w};
}
sort(e, e + n - 1, cmp);
for(int i = 1; i <= n; i++) p[i] = i, s[i] = 1;
int res = 0;
for(int i = 0; i < n - 1; i++)
{
int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
if(a != b)
{
res += (s[b] * s[a] - 1) * (w + 1);
p[a] = b;
s[b] += s[a];
}
}
cout << res << endl;
}
return 0;
}
来自ACwing网站
个人学习使用