最小生成树拓展应用---kruskal经典应用 ACwing346

抽象模型

给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树。

求增加的边的权值总和最小是多少。

树中的所有边权均为整数,且新加的所有边权也必须为整数。

输入格式

第一行包含整数t,表示共有t组测试数据。

对于每组测试数据,第一行包含整数N。

接下来N-1行,每行三个整数X,Y,Z,表示X节点与Y节点之间存在一条边,长度为Z。

输出格式

每组数据输出一个整数,表示权值总和最小值。

每个结果占一行。

数据范围

1 ≤ N ≤ 6000
1 ≤ Z ≤ 100

输入样例

2
3
1 2 2
1 3 3
4
1 2 3
2 3 4
3 4 5

输出样例

4
17

AC代码

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 6010;
int n, p[N], s[N];

struct node {
    int a, b, w;
}e[N];

bool cmp(node a, node b)
{
    return a.w < b.w;
}

int find(int x)
{
    if(x != p[x]) p[x] = find(p[x]);
    return p[x];
}

int main(void)
{
    int T;
    cin >> T;
    while(T--)
    {
        cin >> n;
        for(int i = 0; i < n - 1; i++)
        {
            int a, b, w;
            cin >> a >> b >> w;
            e[i] = {a, b, w};
        }
        
        sort(e, e + n - 1, cmp);
        
        for(int i = 1; i <= n; i++) p[i] = i, s[i] = 1;
        
        int res = 0;
        for(int i = 0; i < n - 1; i++)
        {
            int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
            
            if(a != b)
            {
                res += (s[b] * s[a] - 1) * (w + 1);
                p[a] = b;
                s[b] += s[a];
            }
        }
        cout << res << endl;
    }
    return 0;
}

来自ACwing网站
个人学习使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值