题目来源
题目描述
给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。
求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。
输出这个最大值。
注意:数据保证至少存在一个环。
输入格式
第一行包含两个整数L和P。
接下来L行每行一个整数,表示f[i]。
再接下来P行,每行三个整数a,b,t[i],表示点a和b之间存在一条边,边的权值为t[i]。
输出格式
输出一个数表示结果,保留两位小数。
数据范围
2 ≤ L ≤ 1000 ,
2 ≤ P ≤ 5000,
1 ≤ f[i] , t[i] ≤ 1000
输入样例
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例
6.00
主要思路
我们称使“环上各点的权值之和”除以“环上各边的权值之和”最大这类问题为01分数规划问题,这类问题主要解法为二分答案+图论知识。
首先我们由f[i] , t[i]的数据范围可知环上各点的权值之和除以环上各边的权值之和的结果的范围为(0, 1000],所以我们只需在次区间内二分答案即可。代码如下
double l = 0, r = 1000;
while(r - l > 1e-4)
{
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
问题就变成了我们改如何解决check函数问题。
当环上各点的权值之和除以环上各边的权值之和大于mid时我们就令l = mid,否则令r = mid。
那我们如何判断环上各点的权值之和除以环上各边的权值之和是否大于mid,此时需要数学公式的推导,假设环上有k个点
(
∑
k
=
1
n
f
[
i
]
/
∑
k
=
1
n
t
[
i
]
)
>
m
i
d
(\sum_{k=1}^n f[i] / \sum_{k=1}^n t[i]) > mid
(k=1∑nf[i]/k=1∑nt[i])>mid
∑ k = 1 n f [ i ] > m i d ∗ ∑ k = 1 n t [ i ] \sum_{k=1}^n f[i] > mid * \sum_{k=1}^n t[i] k=1∑nf[i]>mid∗k=1∑nt[i]
∑ k = 1 n f [ i ] − m i d ∗ ∑ k = 1 n t [ i ] > 0 \sum_{k=1}^n f[i] - mid * \sum_{k=1}^n t[i] > 0 k=1∑nf[i]−mid∗k=1∑nt[i]>0
∑ k = 1 n ( f [ i ] − m i d ∗ t [ i ] ) > 0 \sum_{k=1}^n (f[i] - mid * t[i]) > 0 k=1∑n(f[i]−mid∗t[i])>0
这个公式表明,只要当前环中点的权值-mid*出边的权值和为正,那么就可以判断出环上各点的权值之和除以环上各边的权值之和大于mid,同时令l = mid,也就是说我们用该公式判断出是否存在正环即可,判断正环或负环可以用spfa算法判断
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 1010, M = 5010;
int n, m, cnt[N], wf[N];
double dist[N];
int h[N], e[M], ne[M], wt[M], idx;
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b, wt[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
bool check(double mid)//spfa判断正环
{
memset(st, 0, sizeof(st));
memset(cnt, 0, sizeof(cnt));
memset(dist, 0, sizeof(dist));
queue<int> q;
for(int i = 1; i <= n; i++) q.push(i), st[i] = true;
while(q.size())
{
int t = q.front();
q.pop();
st[t] = false;
for(int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if(dist[j] < dist[t] + wf[t] - mid * wt[i])//用最长路判断是否存在正环
//若有正环则会无限更新,直到边数大于n,当边数大于n时则至少有n+1个点
//由抽屉原理判断出一定存在重复的点,也就是一定有正环
{
dist[j] = dist[t] + wf[t] - mid * wt[i];
cnt[j] = cnt[t] + 1;
if(cnt[j] >= n) return true;//边数大于n判断存在正环
if(!st[j])
{
st[j] = true;
q.push(j);//入队
}
}
}
}
return false;//如果没有正环返回false
}
int main(void)
{
cin >> n >> m;
memset(h, -1, sizeof(h));
for(int i = 1; i <= n; i++)
{
cin >> wf[i];
}
for(int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
double l = 0, r = 1000;
while(r - l > 1e-4)//二分
{
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf\n", l);
return 0;
}