高代绿皮书第四版课后习题1.5 T4

原题


利用Vandermonde行列式计算下列行列式

|A|=\left| \begin{matrix} a_{1}^{n-1} & a_{1}^{n-2}{​{b}_{1}} & \cdots & {​{a}_{1}}b_{1}^{n-2} & b_{1}^{n-1} \vspace{1ex}\\ a_{2}^{n-1} & a_{2}^{n-2}{​{b}_{2}} & \cdots & {​{a}_{2}}b_{2}^{n-2} & b_{2}^{n-1} \vspace{1ex}\\ \vdots & \vdots & {} & \vdots & \vdots \vspace{1ex}\\ a_{n}^{n-1} & a_{n}^{n-2}{​{b}_{n}} & \cdots & {​{a}_{n}}b_{n}^{n-2} & b_{n}^{n-1} \\ \end{matrix} \right|


解析


思路:

分为三种情况进行讨论:

(1):

\forall a_{i}\neq 0 \Rightarrow |A|=\displaystyle \prod \limits_{i=1}^{n} {a_{i}^{n-1}}|B|

其中|B|为Vandermonde行列式,用相关公式求解即可

(2):

\exists!\,a_{i}=0

则按照第 i 列展开即得

|A|=(-1)^{i+n}\,b_{i}^{n-1}\displaystyle \prod \limits_{k=1,k\neq i}^{n}{a_{k} ^{n-1}}|C|

其中|C|为|B|去掉第 i 行第 n 列后的 n-1 阶Vandermonde行列式,用相关公式求解即可

(3):

a_{i}=a_{j}=0\,(i\neq j)

则按照第 i 列展开即得

|A|=0

以上三种情况的结果都可以综合到第一种情况的结果

参考解题细节:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值