高代绿皮第四版课后习题2.2 T4

原题


计算下列矩阵的k次幂,其中k为正整数:

(1)                                                                          (2)

     A=\left( \begin{matrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \\ \end{matrix} \right)                                                 A=\left( \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right)   

(3)                                                                          (4)

     A=\left( \begin{matrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \\ \end{matrix} \right)                                                 A=\left( \begin{matrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 3 & 6 & 12 \\ \end{matrix} \right)                            


解析


思路:

(1):根据矩阵乘法易知

A^{k}=\left( \begin{matrix} a^{k} & 0 & 0 \\ 0 & b^{k} & 0 \\ 0 & 0 & c^{k} \\ \end{matrix} \right)

(2):首先计算k=2的情形

A^{2}=\left( \begin{matrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \\ \end{matrix} \right)

不妨假设

A^{k}=\left( \begin{matrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \\ \end{matrix} \right)

现用数学归纳法对k进行归纳,易知k=1,2时结论成立,假设 n<k  时结论成立

则 n=k 时

A^{k}=A^{k-1}A

根据归纳假设代入计算即可

(3):令

J=\left( \begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{matrix} \right)

验证可得

A=aI_{3}+J\,\,\,,(aI_{3})J=J(aI_{3})\,\,,J^{3}=0

A^{k}=(aI_{3}+J)^{k}

利用二项式展开计算化简即可

(4):令

\vec{\alpha}=(1,2,3)\,\,,\vec{\beta}=(1,2,4)

A=\alpha'\beta\,\,\,\,\& \,\,\,\,\beta\alpha'=17

A^{k}=(\alpha'\beta)^{k}=(\alpha'\beta)(\alpha'\beta)\cdots(\alpha'\beta)=\alpha'(\beta\alpha')(\beta\alpha')\cdots(\beta\alpha')\beta

计算化简即可

参考解题细节:

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值