智能计算—模糊计算总结

目录

框架

1 介绍

1.1 概念

1.2 原理

 2 理论发展 

3 模糊计算

3.1 模糊逻辑和模糊集合

3.1.1 模糊集合的表示方法

3.1.2 确定隶属函数方法

3.2 模糊识别

3.2.1 择近原则

3.2.2 模糊集的贴近度

3.3 模糊关系

3.3.1 模糊关系的概念

3.3.2 模糊关系的运算

 3.3.3 模糊关系的合成

3.3.4 模糊关系的性质

3.4 模糊聚类

3.4.1 模糊关系

3.4.2 模糊聚类的过程

3.5 模糊推理

3.5.1 模糊推理的概念

3.5.2 模糊命题与模糊条件语句

3.5.3 关系合成推理法(CRI)

3.6 模糊控制

4 模糊计算的应用


框架

1 介绍

1.1 概念

模糊计算是计算智能的一个重要领域,是以模糊集理论为基础的。它可以模拟人脑非精确、非线性的信息处理能力,在许多应用领域内都有用途。人们通常可以用“模糊计算”笼统地代表诸如模糊推理(FIS,Fuzzy Inference System)、模糊逻辑(Fuzzy Logic)、模糊系统等模糊应用领域中所用到的计算方法及理论。

1.2 原理

模糊计算涉及的就是依据模糊规则,从几个控制变量的输入得到最终的输出的过程。细分为4个模块:模糊规则库、模糊化、推理方法、去模糊化。图1显示了模糊计算的基本流程:

步骤1需要从具体输入得到对模糊集的隶属度,并激活相关模糊规则。从具体输入得到对模糊集隶属度的算子又叫模糊化算子

步骤2需利用模糊规则进行推理得出结论,在不同的问题中,推理方法可能不相同;

步骤3需综合2中的结果并从模糊隶属度得到实际输出值。从模糊隶属度得到实际输出的算子又叫做去模糊化算子

 2 理论发展 

3 模糊计算

3.1 模糊逻辑和模糊集合

经典二值逻辑中,通常以0表示“假”以1表示“真”,一个命题非真即假。在模糊逻辑中,一个命题不再非真即假,它可以被认为是“部分的真”。模糊逻辑取消二值之间非此即彼的对立,用隶属度表示二值间的过度状态。隶属度表示程度,它的值越大,表明u属于A的程度越高,反之则表明u属于A的程度越低。

模糊集合理论是将经典集合理论模糊化,并引入语言变量和近似推理的模糊逻辑,具有完整的推理体系的一种智能技术。许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。

设X是论域,X上的一个实值函数用 \mu _{A}来表示,即:

 \mu _{A}(x)称为x对A的隶属度,而\mu _{A}称为隶属函数。

3.1.1 模糊集合的表示方法

1、Zadeh表示法

(1)论域是离散且元素数目有限:

(2)论域是连续的,或者元素数目无限:

 2. 序偶表示法

 3. 向量表示法

3.1.2 确定隶属函数方法

对于一个特定的模糊集,隶属函数体现了其模糊性,隶属函数的值称为隶属度,它是模糊概念的定量描述。隶属函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属函数的确定又带有主观性。

1、模糊统计法

2、指派法

以实数域R为论域时,称隶属函数为模糊分布。常见的模糊分布有:

3.2 模糊识别

3.2.1 择近原则

设论域U上n个模糊集 A_{i}(i=1,2,...,n)为n个标准模式,有U上的模糊集B为待识别对象,若存在 i\in {1,2,...,n},使得N(A_{i},B)=max_{1\leqslant j\leq n} \left \{ N(A_{i},B) \right \},则称B与A_{i} 最贴近,并判定B与A_{i} 

一类。 

3.2.2 模糊集的贴近度

贴近度是对两个模糊集接近程度的一种度量,设 A,B,C\in F(U)若映射

满足条件:

N(A,B)为模糊集A与B的贴近度,N称为F(U)上的贴近度函数

1、 海明贴近度

 2、 欧几里得贴近度

3、 黎曼贴近度

若U为实数域,被积函数为黎曼可积,且广义积分收敛,则:

3.3 模糊关系

3.3.1 模糊关系的概念

X,Y为非空模糊集,X,Y的直积构成的一个子集R,是X到Y的一个模糊关系,记R_{X\times Y}

 论域X,Y是有限论域,对于X到Y的一个模糊关系R,可以用一个 m\times n矩阵表示为:

3.3.2 模糊关系的运算

1、模糊矩阵并

 2、模糊矩阵交

 3、模糊矩阵补

 3.3.3 模糊关系的合成

定义1:设R是X\times Y中的关系,S是Y\times Z中的关系,所谓R和S的合成是只定义在S\times Z上的模糊关系Q,模糊关系R和S的合成定义为:

 或:

 定义2:设R=\left [ r_{ij}\right ],S=\left [ s_{jk}\right ] ,模糊矩阵R和S的合成定义为:

 或:

3.3.4 模糊关系的性质

1. 自反性若 \forall x\in U,\mu _{R}\left ( x,x \right )=1则称R满足自反性,若A为自反矩阵,有:

 

3.4 模糊聚类

模糊关系表示元素之间被表征的描述关系,通过关系计算可以实现模糊聚类。

3.4.1 模糊关系

1. 模糊相似关系:当模糊关系有自反性、对称性时,称为模糊相似关系

2. 模糊等价关系:模糊关系有自反性、对称性、传递性时,称为模糊等价关系

3.4.2 模糊聚类的过程

1. 数据标准化:

 2. 构建模糊矩阵

将元素间的关系用矩阵表征出来,使用方法包括:相似度系数法(夹角余弦法、相关系数法)、距离法(Euclid距离、Hamming距离、Chebyshev距离)、贴近度法(最大最小法、算术平均法、几何平均法)

最大最小法:

3. 求传递闭包

步骤二求出模糊相似关系阵,通过传递闭包法求出模糊等价关系阵,模糊矩阵做幂运算,当矩阵不再改变时,为等价关系

4. 动态聚类

在不同水平下对数据进行聚类,水平给出的方法使用 \lambda -截集(隶属度为\lambda的集合)

3.5 模糊推理

3.5.1 模糊推理的概念

模糊推理又称模糊逻辑推理,是指从已知模糊命题(包括大前提和小前提),推出新的模糊命题作为结论的过程,是一种近似推理。

1. 模糊语言变量

一个语言变量可由以下的五元体来表征(x,T(x),U,G,M)

2. 语言算子

在模糊语言前面加上“极”、“非常”、“相当”、“比较”、“略”、“稍微”、“非”等语气算子后,将改变了该模糊语言的含义,相应地隶属度函数也要改变。

3.5.2 模糊命题与模糊条件语句

1. 模糊命题

模糊命题分为性质命题和关系命题两种。一般形式为:

模糊命题的真值由该变元对模糊集合的隶属程度表示:

 模糊命题之间有析取、合取、取非运算。

2. 模糊条件语句

(1)简单模糊条件语句

A表示“x是A”,B表示“y是B”,则简单模糊条件语句表示为:

 命题表达式为:

 隶属函数为:

(2)多重简单模糊条件语句

句型为:

命题表达式:

 隶属函数:

(3)多重模糊条件语句

句型:

命题表达式:

隶属函数:

(4)多重多维模糊条件语句

句型:

 命题表达式:

 隶属函数:

3.5.3 关系合成推理法(CRI)

1. Zadeh的推理方法

(1)模糊取式

结论:

 隶属函数:

(2)模糊拒取式

结论:

 隶属函数:

2. Mamdani 的推理方法

(1)模糊取式

 (2)模糊拒取式

3. 多输入模糊推理

结论:

 隶属函数:

3.6 模糊控制

模糊控制是用语言归纳操作人员的控制策略,运用语言变量和模糊集合理论形成控制算法的一种控制。模糊控制的最重要特征是不需要建立被控对象精确的数学模型,只要求把现场操作人员的经验和数据总结成较完善的语言控制规则,从而能够对具有不确定性、不精确性、噪声以及非线性、时变性、时滞等特征的控制对象进行控制。模糊控制系统的鲁棒性强,尤其适用于非线性、时变、滞后系统的控制。模糊控制的基本结构如图所示:

 模糊控制主要体现在应用方面

4 模糊计算的应用

模糊计算适用于 :

复杂且没有完整数学模型的非线性问题。可在不知晓具体模型的情况下利用经验规则求解。

与其它智能算法结合实现优势互补。提供了将人类在识别、决策、理解等方面的模糊性引入机器及其控制的途径。

### 回答1: 智能计算系统实验教程pdf是一本关于智能计算系统实验的教程,它以PDF格式呈现,旨在教授读者有关智能计算系统的知识和实践。 这本教程首先介绍了智能计算系统的基本概念和原理,帮助读者建立对智能计算系统的基本认识。接着,它深入讲解了智能计算系统的各种实验设计和实施过程,涵盖了人工智能、机器学习、模式识别等领域的相关内容。通过实验案例的引导,读者可以学习和掌握智能计算系统的设计方法、实验步骤和数据分析技巧。 在这本教程中,读者将获得实践经验和理论知识的结合,从而更好地理解智能计算系统的工作原理和应用场景。同时,这本教程还提供了实验教材和实验数据,帮助读者进行实验操作和数据分析,为读者提供了一种全面而深入的学习方式。 总之,智能计算系统实验教程pdf是一本介绍智能计算系统实验的综合性教程,它通过理论和实践相结合的方式,帮助读者了解智能计算系统的理论知识和实验方法,提升读者的智能计算系统设计和应用能力。该教程对于学习智能计算系统的人士来说是一本很有价值的参考书。 ### 回答2: 智能计算系统实验教程是一本介绍智能计算系统实验的指导手册,它以PDF格式发布,方便学生和教师在线阅读和下载。这本教程的目的是帮助读者了解智能计算系统的基本原理和应用,并通过实验来加深对这些概念的理解和掌握。 教程的内容涵盖了智能计算系统的基础知识,包括神经网络、遗传算法、模糊逻辑等。每一章节都采用了简洁明了的方式,通过实验案例来讲解相关的理论和方法,以及如何使用相应的工具和软件进行实验。教程还提供了实验步骤和实验数据的分析,帮助读者更好地理解实验过程和结果,从而提高自己的实验能力。 教程中的实验案例涵盖了多个应用领域,包括图像处理、模式识别、数据挖掘等。这些案例旨在让读者通过实践掌握智能计算系统在不同领域中的应用方法和技巧。教程还提供了实验中可能遇到的问题及解决方案,读者可以通过参考这些解决方案来克服实验中的困难。 总之,智能计算系统实验教程是一本帮助读者学习和实践智能计算系统的重要资料。它提供了丰富的实验案例和详细的实验指导,对于想要深入了解和应用智能计算系统的学生和教师来说,是一本不可多得的参考书。通过阅读和实践,读者能够掌握智能计算系统的基本原理和方法,提高自己的实验技能,并在实际应用中发挥智能计算系统的潜力。 ### 回答3: 智能计算系统实验教程pdf是一本有关智能计算系统实验教学的电子书。该教程向读者介绍了智能计算系统的基本概念、原理和实验技能。它包含了多个实验项目,以帮助学生理解和掌握智能计算系统的关键概念和技术。 在智能计算系统实验教程pdf中,读者可以学习到何为智能计算系统,以及其在现代科技中的应用领域。教程通过具体实验案例,展示了智能计算系统的设计、编程和优化技巧。读者可以通过学习这些实验案例,深入了解智能计算系统的原理,并培养解决实际问题的思维能力。 此外,智能计算系统实验教程pdf还提供了实际编程的示例和模板代码,帮助读者快速上手实践。通过跟随教程,读者可以学习如何使用智能计算系统的开发工具和环境,如何实现各种智能算法和技术,并且可以通过实验进行系统性能的评估和改进。 总之,智能计算系统实验教程pdf对于学习和研究智能计算系统的人们来说是一本宝贵的参考资料。它提供了全面而系统的实验教学内容,帮助读者掌握智能计算系统的关键知识和技能。无论是初学者还是有一定经验的研究者,都可以从教程中获得很大的收益。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值