前言
自2022年末ChatGPT的问世,大语言模型(LLM)技术引发全球关注。在大模型技术落地的最佳实践中,智能体(Agent)架构显现出巨大潜力,成为业界的普遍共识,各大公司也纷纷启动Agent技术验证项目。
基于此背景,我们在23年下半年对Agent的应用进行了一些探索,并打造了京东广告投放Agent应用—京准通智能助手。过去一年,京准通智能助手历经多个版本迭代,已经具备智能客服、数据查询、广告创编等AI能力,逐渐成为广告主的超级助手。这背后,依托于我们构建的AI工程化技术体系。本文将详细介绍京准通智能助手的构建过程,并系统化阐述AI工程能力建设中的关键技术实践与创新方法论。
一、Agent 在京东广告投放中的落地
1、Agent 在京东广告投放中的应用场景
经过前期我们对Agent应用方向的探索和尝试,确定了Agent在京东广告投放中落地的两个主要的场景:
1.1 服务提效
1.2 盯盘提效
2、Agent 工程能力实现
在明确具体应用场景的基础上,依托前期技术积累与探索成果,工程实现层面需重点构建RAG和Function Call两大核心技术能力,为智能客服与智能指令场景的应用提供技术支撑。下面将深入阐述这两大核心能力的实现方案。
2.1 RAG能力的演变
RAG能力在实际应用中,经历过多次升级迭代,主要分为两个版本:RAG1.0、RAG2.0
RAG1.0
RAG1.0版本中完成了基础能力的建设,包含两部分:离线知识构建、在线推理引擎。
离线知识构建
离线知识构建的核心工作是将知识转化为向量并存储。主要有以下几个步骤:
1.产品/运营将相关业务的知识整理成文档(Markdown、Excel等)
2.根据不同格式和切割方式将内容切割成若干个内容块
3.调用embedding model,进行内容向量化
4.将向量存储至京东Vearch向量库
在线推理引擎
在线推理引擎提供实时在线服务,核心工作是检索相关知识并调用大模型解决问题。主要有以下几个步骤:
1.收到用户Query,调用embedding 模型,进行向量化,获得向量。
2.根据Query的向量,在向量库中进行相关性检索,获得和Query相关的知识
[{
"_score": 0.7526149153709412,//相关性分值
"_source": {
"title": "搜索快车-定向设置-关键词定向-功能入口",
"content": " 搜索快车->新增/编辑快车推广单元->添加关键词...",
"status": 1,
//更多字段...
},
},
//更多知识...
]
3.拼接提示词,要让模型更方便理解,需要将知识处理成特定的格式
//这里不方便展示业务真实的提示词,以下仅提供大致思路
请根据信息
"""
搜索快车-搜索快车投放要素-定向设置-关键词定向-功能入口
- 搜索快车->新增/编辑快车推广单元->添加关键词;
//更多知识...
"""
回答问题
"""
搜索快车关键词设置
"""
4.调用大模型接口,传入拼接好的提示词,获取结果返回给用户。
{"output": "在搜索快车中进行关键词设置的步骤如下:\n\n1. **添加关键词**:\n - 进入搜索..."}
RAG2.0
向量召回时,通常要设置最低相关分值