前言
首先声明,这道题解法来自博客:https://blog.csdn.net/qq_16633405/article/details/79211002
不过原文没有给出解释,想了很久才想出来
解题思路
这是ACM中比较常见的一类题,本身找规律是不难的,无非就是前两个个数相加等于后一个数,按照常规的解法是很容易的,例如
java源码
public class Test {
public static void main(String[] args) {
System.out.println("结果是:"+Test.foo(30));
}
/**
* 常见解法
*/
public static int foo(int i){
int a=1,b=1;
int c=0;
for(int k=2;k<i;k++){//注意循环次数
c=a+b;
a=b;//注意这句要放在b=c之前
b=c;
}
return c;
}
}
很明显,这样很容易我们就能得到答案,不过写代码的时候要注意细节问题,不然容易出差错,这样虽然容易 但是,并不是我们要的递归求解。
上面是正向的解法,而递归巧妙之处在于它的逆向求解过程,解题过程如下。
java源码
public class Test {
public static void main(String[] args) {
System.out.println("结果是:"+Test.foo(30));
}
/**
* 递归算法实现
*/
public static int foo(int i){
if(i<=0)
return 0;
else if(i>0 && i<=2)
return 1;
return foo(i-1) + foo(i-2);
}
}
分析
这样求解其实是需要算法的一定积累的,不然也并不容易想到
现在举例来看递归体现在哪了
我们用递归模拟求解第6个数字过程如下
i=6 | Foo(6) |
等于 | foo(5)+foo(4) |
等于 | foo(4)+foo(3)+foo(3)foo(2) |
等于 | foo(3)+foo(2)+…….. |
很明显fOO(2)与foo(1)在程序中已经声明了结果,同理就算是第30个数字,利用递归不断化解,也就能解出来了