判断点与多边形的位置关系

遇到一个需求,给定一个点的坐标以及一个多边形的所有顶点坐标。要求能够判断这个点是在多边形内,还是在多边形外?

【参考文献】:
1、两条直线的关系
http://www.cnblogs.com/devymex/archive/2010/08/19/1803885.html
2、点与多边形的关系
http://wenku.baidu.com/view/5e3913a2b0717fd5360cdccf.html?qq-pf-to=pcqq.c2c

经过在网上的一番搜索,发现目前比较通用的就是射线法,而我采用的就是X轴射线法。主要理论来源于西安交大的一篇论文(即参考文献的第二条)

代码讲解:
主要的类有两个:一个是坐标点的抽象类,另一个是位置关系判断工具类。

1、是坐标点的抽象类

package com.niux.crm.core.common.bmap;

/**
 * 用于构造百度地图中的经纬度点
 * 
 * @author zhengtian
 * @date 2013-8-5 下午02:54:41
 */
public class BmapPoint {
	private double lng;// 经度
	private double lat;// 纬度

	public BmapPoint() {

	}

	public BmapPoint(double lng, double lat) {
		this.lng = lng;
		this.lat = lat;
	}

	@Override
	public boolean equals(Object obj) {
		if (obj instanceof BmapPoint) {
			BmapPoint bmapPoint = (BmapPoint) obj;
			return (bmapPoint.getLng() == lng && bmapPoint.getLat() == lat) ? true : false;
		} else {
			return false;
		}
	}

	public double getLng() {
		return lng;
	}

	public void setLng(double lng) {
		this.lng = lng;
	}

	public double getLat() {
		return lat;
	}

	public void setLat(double lat) {
		this.lat = lat;
	}
}



2、位置关系判断工具类

点与多边形的位置关系的判定规则:1、,根据多边形的坐标,虚拟出一个外包矩形,主要是为了提前过滤不相关的点,减少运算量。2、然后判断是否有重合的点。3、判断点与斜线的交点。4、判断点过顶点的情况。5、判断点与边重合的情况。6、判断点在边上的情况。

其中点过顶点,以及点与边重合的情况,主要采用了加权边的思想,论文与代码中有注释。


package com.niux.crm.core.common.bmap;

import java.util.Arrays;


/**
 * 用于点与多边形位置关系的判断
 * 
 * @author zhengtian
 * @date 2013-8-5 上午11:59:35
 */
public class GraphUtils {

	/**
	 * 判断点是否在多边形内(基本思路是用交点法)
	 * 
	 * @param point
	 * @param boundaryPoints
	 * @return
	 */
	public static boolean isPointInPolygon(BmapPoint point, BmapPoint[] boundaryPoints) {
		// 防止第一个点与最后一个点相同
		if (boundaryPoints != null && boundaryPoints.length > 0
				&& boundaryPoints[boundaryPoints.length - 1].equals(boundaryPoints[0])) {
			boundaryPoints = Arrays.copyOf(boundaryPoints, boundaryPoints.length - 1);
		}
		int pointCount = boundaryPoints.length;

		// 首先判断点是否在多边形的外包矩形内,如果在,则进一步判断,否则返回false
		if (!isPointInRectangle(point, boundaryPoints)) {
			return false;
		}

		// 如果点与多边形的其中一个顶点重合,那么直接返回true
		for (int i = 0; i < pointCount; i++) {
			if (point.equals(boundaryPoints[i])) {
				return true;
			}
		}

		/**
		 * 基本思想是利用X轴射线法,计算射线与多边形各边的交点,如果是偶数,则点在多边形外,否则在多边形内。还会考虑一些特殊情况,如点在多边形顶点上
		 * , 点在多边形边上等特殊情况。
		 */
		// X轴射线与多边形的交点数
		int intersectPointCount = 0;
		// X轴射线与多边形的交点权值
		float intersectPointWeights = 0;
		// 浮点类型计算时候与0比较时候的容差
		double precision = 2e-10;
		// 边P1P2的两个端点
		BmapPoint point1 = boundaryPoints[0], point2;
		// 循环判断所有的边
		for (int i = 1; i <= pointCount; i++) {
			point2 = boundaryPoints[i % pointCount];

			/**
			 * 如果点的y坐标在边P1P2的y坐标开区间范围之外,那么不相交。
			 */
			if (point.getLat() < Math.min(point1.getLat(), point2.getLat())
					|| point.getLat() > Math.max(point1.getLat(), point2.getLat())) {
				point1 = point2;
				continue;
			}

			/**
			 * 此处判断射线与边相交
			 */
			if (point.getLat() > Math.min(point1.getLat(), point2.getLat())
					&& point.getLat() < Math.max(point1.getLat(), point2.getLat())) {// 如果点的y坐标在边P1P2的y坐标开区间内
				if (point1.getLng() == point2.getLng()) {// 若边P1P2是垂直的
					if (point.getLng() == point1.getLng()) {
						// 若点在垂直的边P1P2上,则点在多边形内
						return true;
					} else if (point.getLng() < point1.getLng()) {
						// 若点在在垂直的边P1P2左边,则点与该边必然有交点
						++intersectPointCount;
					}
				} else {// 若边P1P2是斜线
					if (point.getLng() <= Math.min(point1.getLng(), point2.getLng())) {// 点point的x坐标在点P1和P2的左侧
						++intersectPointCount;
					} else if (point.getLng() > Math.min(point1.getLng(), point2.getLng())
							&& point.getLng() < Math.max(point1.getLng(), point2.getLng())) {// 点point的x坐标在点P1和P2的x坐标中间
						double slopeDiff = 0.0d;
						if (point1.getLat() > point2.getLat()) {
							slopeDiff = (point.getLat() - point2.getLat()) / (point.getLng() - point2.getLng())
									- (point1.getLat() - point2.getLat()) / (point1.getLng() - point2.getLng());
						} else {
							slopeDiff = (point.getLat() - point1.getLat()) / (point.getLng() - point1.getLng())
									- (point2.getLat() - point1.getLat()) / (point2.getLng() - point1.getLng());
						}
						if (slopeDiff > 0) {
							if (slopeDiff < precision) {// 由于double精度在计算时会有损失,故匹配一定的容差。经试验,坐标经度可以达到0.0001
								// 点在斜线P1P2上
								return true;
							} else {
								// 点与斜线P1P2有交点
								intersectPointCount++;
							}
						}
					}
				}
			} else {
				// 边P1P2水平
				if (point1.getLat() == point2.getLat()) {
					if (point.getLng() <= Math.max(point1.getLng(), point2.getLng())
							&& point.getLng() >= Math.min(point1.getLng(), point2.getLng())) {
						// 若点在水平的边P1P2上,则点在多边形内
						return true;
					}
				}
				/**
				 * 判断点通过多边形顶点
				 */
				if (((point.getLat() == point1.getLat() && point.getLng() < point1.getLng()))
						|| (point.getLat() == point2.getLat() && point.getLng() < point2.getLng())) {
					if (point2.getLat() < point1.getLat()) {
						intersectPointWeights += -0.5;
					} else if (point2.getLat() > point1.getLat()) {
						intersectPointWeights += 0.5;
					}
				}
			}
			point1 = point2;
		}

		if ((intersectPointCount + Math.abs(intersectPointWeights)) % 2 == 0) {// 偶数在多边形外
			return false;
		} else { // 奇数在多边形内
			return true;
		}
	}

	/**
	 * 判断点是否在矩形内在矩形边界上,也算在矩形内(根据这些点,构造一个外包矩形)
	 * 
	 * @param point
	 *            点对象
	 * @param boundaryPoints
	 *            矩形边界点
	 * @return
	 */
	public static boolean isPointInRectangle(BmapPoint point, BmapPoint[] boundaryPoints) {
		BmapPoint southWestPoint = getSouthWestPoint(boundaryPoints); // 西南角点
		BmapPoint northEastPoint = getNorthEastPoint(boundaryPoints); // 东北角点
		return (point.getLng() >= southWestPoint.getLng() && point.getLng() <= northEastPoint.getLng()
				&& point.getLat() >= southWestPoint.getLat() && point.getLat() <= northEastPoint.getLat());

	}

	/**
	 * 根据这组坐标,画一个矩形,然后得到这个矩形西南角的顶点坐标
	 * 
	 * @param vertexs
	 * @return
	 */
	private static BmapPoint getSouthWestPoint(BmapPoint[] vertexs) {
		double minLng = vertexs[0].getLng(), minLat = vertexs[0].getLat();
		for (BmapPoint bmapPoint : vertexs) {
			double lng = bmapPoint.getLng();
			double lat = bmapPoint.getLat();
			if (lng < minLng) {
				minLng = lng;
			}
			if (lat < minLat) {
				minLat = lat;
			}
		}
		return new BmapPoint(minLng, minLat);
	}

	/**
	 * 根据这组坐标,画一个矩形,然后得到这个矩形东北角的顶点坐标
	 * 
	 * @param vertexs
	 * @return
	 */
	private static BmapPoint getNorthEastPoint(BmapPoint[] vertexs) {
		double maxLng = 0.0d, maxLat = 0.0d;
		for (BmapPoint bmapPoint : vertexs) {
			double lng = bmapPoint.getLng();
			double lat = bmapPoint.getLat();
			if (lng > maxLng) {
				maxLng = lng;
			}
			if (lat > maxLat) {
				maxLat = lat;
			}
		}
		return new BmapPoint(maxLng, maxLat);
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值