2的非负整数次幂的判断方法、证明以及一些思考

本文探讨如何判断一个整数是否为2的非负整数次幂,提出通过位操作`X & (X - 1) == 0`进行判断,并详细证明了其充分性和必要性。这种方法具有接近原子操作的高效性,揭示了二进制计数的红利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

如何判断一个给定的整数是否为2的非负整数次幂?

通常的解法或者需要O(LOGN)的时间开销;或者通过时间换空间策略,建立一个LOG(MAX)大小的hash table解决限定范围内数据的判断问题。我们需要意识到的是,后者事实上是把运行时的运算开销前置到了编译期,总的计算成本是一样的。

前几天在学习极客时间上吴咏炜老师的《现代C++实战30讲》课程(顺便推荐吴咏炜老师的这门C++课程,需要有C++开发经验)时,发现吴老师在范例代码中展示了一种非常巧妙的算法:

 

X & (X - 1) == 0

 

思考了一下,发现这个算法非常优美且高效。其几乎接近原子操作,和其他算法O(LogN)的时间开销比起来判若云泥。以至于我甚至一度怀疑这两个命题的等价性。遂尝试如下证明:

 

证明 ”X是2的非负整数次幂“ 与 ”X & (X - 1) == 0“ 是等价的;

 

充分性证明:

已知X是2的正整数次幂;可一般性假设X的二进制可表达为m位上1,从m-1位到1位共m-1个0;任取Y < X, 可知Y的二进制表达中,第m位必为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值