《神经网络:车辆损毁数据评估的新利器》:此文为AI自动生成

一、神经网络在车辆损毁评估中的兴起

传统的车辆损毁评估方式主要采取人工定损,这种方式存在诸多不足。一方面,人工定损具有很大的主观因素,一些定损人员的专业性不强、定损的标准不统一,导致不能合理、准确地对车辆的损失进行评定。另一方面,人工定损效率较低,耗费大量的时间和人力成本。
随着科技的不断发展,神经网络在车辆损毁评估中的应用变得越来越必要。汽车是一个复杂的机械、电子一体化的综合系统,对汽车损失程度的评价是一个多因素决定的全面评价。传统的定损方式难以准确考虑到所有的因素,而神经网络可以通过大量的数据学习,自动提取车辆损毁的特征,从而对车辆的损失进行科学、合理、客观的评定。
例如,在汽车损失神经网络评价模型中,利用三层误差反向传播神经网络模型,包含输入层、隐含层和输出层三个层次,可以根据汽车损失评价二级指标体系模型中的 21 项二级指标,对车辆损失进行评估。此外,基于神经网络的车辆损伤级别的确定方法,通过获取车辆损伤图像,并根据图像中各个像素点的位置坐标与 RGB 值的对应关系,生成损伤数据矩阵,再经过卷积神经网络和 softmax 分类器,确定车辆损伤级别,提高了定损的准确度和自动化程度,节省了时间和人力成本。

二、理论基础与模型构建

(一)汽车损失评价指标体系

汽车是一个复杂的机械、电子一体化的综合系统,对其损失程度的评价需多因素全面考量。构建汽车损失评价二级指标体系模型主要结合汽车组成的相关知识。该模型为层次型,具体而言,汽车损失的评价结果是一个具体数值,根据数值大小分为五个等级:I 级(0~0.09)表示轻微程度的损失;II 级(0.10~0.29)为一般程度的损失;III 级(0.30~0.59)是中等程度的损失;IV 级(0.60~0.85)为严重程度的损失;V 级(0.86~1)表示无修复价值,报废。在汽车损失评价二级指标体系模型中,共有 21 项二级指标,这些指标涵盖了汽车各个方面的性能和状况,为全面、准确地评估汽车损失提供了依据。

(二)神经网络评价模型结构

汽车损失神经网络评价模型利用三层误差反向传播神经网络模型来实现对汽车损失的评价,包含输入层、隐含层和输出层三个层次。确定各个层次的节点个数是构建该模型的关键。
输入层节点个数的确定:在汽车损失评价二级指标体系模型中,共有 21 项二级指标,而汽车损失神经网络评价模型则以这 21 项二级指标作为输入层的节点个数依据。
隐含层节点个数的确定:隐含层节点个数的选择通常需要根据经验和实验来确定。一般来说,可以通过尝试不同的节点个数,观察模型的性能表现,选择能够使模型性能最优的节点个数。
输出层节点个数的确定:输出层的节点个数通常根据评价结果的类别数来确定。在汽车损失评价中,输出层的节点个数可以根据汽车损失的五个等级来确定,即输出层节点个数为 5。

三、评估方法与具体步骤

ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空云风语

人工智能,深度学习,神经网络

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值