Black And White

本文探讨了四色定理的概念,并提出了一种棋盘染色问题,即如何使用K种颜色对N×M的棋盘进行染色,使得相邻格子颜色不同且每种颜色使用次数固定。文章提供了算法思路与实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color. 
— Wikipedia, the free encyclopedia 

In this problem, you have to solve the 4-color problem. Hey, I’m just joking. 

You are asked to solve a similar problem: 

Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly c i cells. 

Matt hopes you can tell him a possible coloring.

Input

The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases. 

For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ). 

The second line contains K integers c i (c i > 0), denoting the number of cells where the i-th color should be used. 

It’s guaranteed that c 1 + c 2 + · · · + c K = N × M . 

Output

For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1). 

In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells. 

If there are multiple solutions, output any of them.

Sample Input

4
1 5 2
4 1
3 3 4
1 2 2 4
2 3 3
2 2 2
3 2 3
2 2 2

Sample Output

Case #1:
NO
Case #2:
YES
4 3 4
2 1 2
4 3 4
Case #3:
YES
1 2 3
2 3 1
Case #4:
YES
1 2
2 3
3 1

题意:
给 大小为n*m的网格,有K种颜色,让你把第i 种颜色涂到Ci个网格中,其中有共同边的网格不能涂同一种颜色,问你是否能成功涂满,能就输出颜色,不能就输出NO

思路很简单,一开始把所有的网格都初始化为-1,在(1,1)这个位置开始搜,在(n,m)结束,在搜索的时候能涂颜色把颜色赋值给s[x][y]=i;颜色的个数减一,同时判断是否有相邻的颜色,最重要的是剪枝 ,没有剪枝会超时(思路是参考大佬的的)。

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
int f[110],s[20][20];
int n,m,k;
int flag;
void print()
{
	printf("YES\n");
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			if(j==1)
			 printf("%d",s[i][j]+1);
			else
			 printf(" %d",s[i][j]+1);
		}
		printf("\n");
	}
}
int judge(int x,int y,int i)//判断相邻边是否有相同的颜色,                
{                           //因为是从左上角开始的 所以直接看上边和左边是否重复就行
	if(s[x-1][y]==i) return 0; 
	if(s[x][y-1]==i) return 0;
   return 1;
}
void dfs(int x,int y,int sum)
{
	if(flag) return ;
	if(sum==0)
	{
		flag=1;
		print();
		return ;
	}
	for(int i=0;i<k;i++)//剪枝 
	{
		if(f[i]>(sum+1)/2)
		  return ;
	}
	for(int i=0;i<k;i++)
	{
		//printf("%d--\n",judge(x,y,i));
		if(f[i]&&judge(x,y,i))
		{
		  //printf("%d  %d--\n",f[i],judge(x,y,i));
			s[x][y]=i;
			f[i]--;
			if(y==m)
			 dfs(x+1,1,sum-1);
			else
			 dfs(x,y+1,sum-1);
			f[i]++;
			s[x][y]=-1;
		}
	}
}
int main()
{
	int t,c=1;
	scanf("%d",&t);
	while(t--)
	{
		flag=0;
		scanf("%d%d%d",&n,&m,&k);
		for(int i=0;i<k;i++)
		 scanf("%d",&f[i]);
		memset(s,-1,sizeof(s));
		printf("Case #%d:\n",c++);
		 dfs(1,1,n*m);
		 if(!flag)
	    printf("NO\n");
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值