REVISED NOTE ON LEARNING QUADRATIC ASSIGNMENT WITH GRAPH NEURAL NETWORKS 翻译

revised note on learing quardatic assignment wiht graph neural networks

关于使用 图神经网络 学习二次分配的修订说明

摘要

Inverse problems correspond to a certain type of optimization problems formulated over appropriate input distributions. Recently,there has been a growing interest in understanding the computational hardness of these optimization problems, not only in the worst case,but in an average-complexity sense under this same input distribution.反问题对应于在适当的输入分布上形成的某种类型的优化问题。 最近,人们越来越关注理解这些优化问题的计算硬度,不仅在最坏的情况下,而且在同一输入分布下的平均复杂度意义上。
In this revised note, we are interested in studying another aspect of hardness, related to the ability to learn how to solve a problem by simply observing a collection of previously solved instances. These ‘planted solutions’ are used to supervise the training of an appropriate predictive model that parametrizes a broad class of algorithms, with the hope that the resulting model will provide good accuracycomplexity tradeoffs in the average sense.在本修订说明中,我们有兴趣研究硬度的另一个方面,与通过简单地观察先前解决的实例的集合来学习如何解决问题的能力相关。 这些“种植的解决方案”用于监督适当的预测模型的训练,该模型参数化广泛的算法类,希望得到的模型能够在平均意义上提供良好的精度复杂性权衡。
We illustrate this setup on the Quadratic Assignment Problem,a fundamental problem in Network Science. We observe that datadriven models based on Graph Neural Networks offer intriguingly good performance, even in regimes where standard relaxation based techniques appear to suffer.我们在二次分配问题上说明了这种设置,这是网络科学中的一个基本问题。 我们观察到基于图形神经网络的数据驱动模型提供了有趣的良好性能,即使在基于标准松弛的技术似乎受到影响的情况下也是如此。

简介

Many tasks, spanning from discrete geometry to statistics, are defined in terms of computationally hard optimization problems. Loosely speaking, computational hardness appears when the algorithms to compute the optimum solution scale poorly with the problem size, say faster than any polynomial. For instance, in highdimensional statistics we may be interested in the task of estimating a given object from noisy measurements under a certain generative model. In that case, the notion of hardness contains both a statistical aspect, that asks above which signal-to-noise ratio the estimation is feasible, and a computational one, that restricts the estimation to be computed in polynomial time. An active research area in Theoretical Computer Science and Statistics is to understand the interplay between those statistical and computational detection thresholds;see [1] and references therein for an instance of this program in the community detection problem, or [3, 4, 7] for examples of statistical inference tradeoffs under computational constraints.从离散几何到统计的许多任务都是根据计算上的硬优化问题来定义的。简而言之,当计算最优解的算法与问题大小一致时,计算硬度会出现,比任何多项式都要快。例如,在高维统计中,我们可能对在某个生成模型下从噪声测量估计给定对象的任务感兴趣。在这种情况下,硬度的概念既包含统计方面,也包括估计可行的信噪比,以及计算方法,其限制在多项式时间内计算估计。理论计算机科学与统计学的一个活跃的研究领域是理解这些统计学和计算检测阈值之间的相互作用;参见[1]并在其中参考社区检测问题中该程序的实例,或[3,4,7]例如,计算约束下的统计推断权衡。
Instead of investigating a designed algorithm for the problem in question, we consider a data-driven approach to learn algorithms from solved instances of the problem. In other words, given a collection (xi, yi)i≤L of problem instances drawn from a certain distribution, we ask whether one can learn an algorithm that achieves good accuracy at solving new instances of the same problem – also being drawn from the same distribution, and to what extent the resulting algorithm can reach those statistical/computational thresholds.我们不考虑针对相关问题设计算法,而是考虑采用数据驱动方法从问题的解决实例中学习算法。 换句话说,给定从某个分布中抽取的问题实例的集合(xi,yi)i≤L,我们会问是否可以学习一种算法,该算法在解决同一问题的新实例时可以获得良好的准确性 - 也可以从 相同的分布,以及所得算法达到那些统计/计算阈值的程度。
The general approach is to cast an ensemble of algorithms as neural networks ˆy = f(x; θ) with specific architectures that encode prior knowledge on the algorithmic class, parameterized by θ ∈ RS. The network is trained to minimize the empirical loss L(θ) , for a given measure of error ℓ, using stochastic gradient descent. This leads to yet another notion of learnability hardness, that measures to what extent the problem can be solved with no prior knowledge of the specific algorithm to solve it, but only a vague idea of which operations it should involve.一般方法是将算法集合作为神经网络y = f(x;θ),使用特定的体系结构编码算法类的先验知识,由θ∈RS参数化。 对于给定的误差量l,使用随机梯度下降来训练网络以最小化经验损失L(θ)。 这导致了另一个可学习性硬度的概念,即在没有解决它的特定算法的先验知识的情况下测量问题可以解决的程度,而只是模糊地考虑它应该涉及哪些操作。
In this revised version of [20] we focus on a particular NP-hard problem, the Quadratic Assignment Problem (QAP), and study datadriven approximations to solve it. Since the problem is naturally formulated in terms of graphs, we consider the so-called Graph Neural Network (GNN) model [27]. This neural network alternates between applying linear combinations of local graph operators – such as the graph adjacency or the graph Laplacian, and pointwise nonlinearities,and has the ability to model some forms of non-linear message passing and spectral analysis, as illustrated for instance in the data-driven Community Detection methods in the Stochastic Block Model [6]. Existing tractable algorithms for the QAP include spectral alignment methods [30] and methods based on semidefinite programming relaxations [10,33]. Our preliminary experiments suggest that the GNN approach taken here may be able to outperform the spectral and SDP counterparts on certain random graph models,at a lower computational budget. We also provide an initial analysis of the learnability hardness by studying the optimization landscape of a simplified GNN architecture. Our setup reveals that, for the QAP, the landscape complexity is controlled by the same concentration of measure phenomena that controls the statistical hardness; see Section 4.在[20]的修订版本中,我们关注特定的NP难问题,二次分配问题(QAP),以及研究数据驱动的近似值来解决它。由于问题是根据图形自然形成的,我们考虑所谓的图形神经网络(GNN)模型[27]。该神经网络在应用局部图运算符的线性组合(例如图邻接或图拉普拉斯算子)和逐点非线性之间交替,并且能够模拟某些形式的非线性消息传递和频谱分析,如例如随机块模型中的数据驱动的社区检测方法[6]。用于QAP的现有易处理算法包括谱对齐方法[30]和基于半定规划松弛的方法[10,33]。我们的初步实验表明,这里采用的GNN方法可能能够在较低的计算预算下优于某些随机图模型上的频谱和SDP对应物。我们还通过研究简化GNN架构的优化环境,对可学习性硬度进行了初步分析。我们的设置表明,对于QAP,景观复杂性由控制统计硬度的相同浓度的测量现象控制;见第4节。
The rest of the paper is structured as follows. Section 2 presents the problem set-up and describes existing relaxations of the QAP. Section 3 describes the graph neural network architecture, Section 4 presents our landscape analysis, and Section 5 presents our numerical experiments. Finally, Section 6 describes some open research directions motivated by our initial findings.本文的其余部分的结构如下。 第二部分提出问题,建立并介绍了QAP现有松弛。 第3节描述了图神经网络结构,第4节描述了我们的景观分析,第5节介绍了我们的数值实验。 最后,第6节描述了一些由我们的初步发现驱动的开放式研究方向。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值