
其他
文章平均质量分 77
数据算法内归档
程序猿进阶
要做就做第一,就算结果不是第一,也会是一个好成绩。 加油!我的未来不是梦。
展开
-
Mac 卸载 IDEA 流程
(根据自己的版本而定)记得进去看下是否删除干净了。这样就卸载成功了,就可以安装新的。1、现在应用程序中删除。原创 2024-09-30 00:15:00 · 1505 阅读 · 2 评论 -
使用 Java 的开放/封闭原则
我有一个使用Java的SOLID原则的练习,特别是开放/封闭原则,练习要求我编写一个程序来计算不同几何形状的总面积,我有两种方法来编写这个程序,我想问一下哪种方法更好地实现了开放/封闭原则。到底其中哪一个更好地实现了开放/封闭原则,或者是否有更好的方法来实现它们。原创 2024-09-17 00:15:00 · 583 阅读 · 0 评论 -
Mac 链接 HP 136w 打印机步骤
进入到系统后,上侧菜单选 “设置” ,左边子菜单选“wifi”,wifi界面选择 “向导”,跳转的界面会列出当前能搜索到的所有无线网,选中你当前想要加入的网络,输入这个网络环境的登录密码,确定之后,会弹出一个设置成功的弹窗。网址打开后,界面右上角有 “登录” 相关的字样或者按钮,点击,弹出登录弹框,登录弹框输入id,默认id为:admin,密码不用输入,直接点击登录。按钮进入WI-FI菜单】,找到NetWork选项OK进入;【5】打开Mac中的WI-FI设置,选择HP163w相关的无线网络,点击链接。原创 2024-05-08 00:15:00 · 1709 阅读 · 3 评论 -
经典机器学习法---感知模型机
上述算法中的一些细节步骤还是与之前理论部分有差别:比如理论中的随机梯度下降法是使用一个随机误分类点进行优化参数,这就要求每次迭代前都要找出当前参数下的误分类点集,然后在这些点中随机抽取一个样本点更新参数。另一方面边遍历边更新参数的做法可以保证在给定训练样本和参数初始值的情况下,输出的解唯一。分类问题中损失函数的一个自然选择是误分类点的总数,但是考虑到这样的损失函数对于参数。需要注意的是,使用上述损失函数的感知机模型如果采用不同的参数初始值或选取不合的误分类点就会得到不合的参数最优解(存在不止一个超平面。原创 2024-05-01 00:15:00 · 1834 阅读 · 62 评论 -
机器学习——过拟合
不同类型的模型具有不同的特点,所以结合各种模型的预测结果也能有效降低过拟合的风险,提升预测精度。大部分ML模型的学习过程中都运用了类似梯度下降法的迭代优化算法,过多的迭代次数会出现过度训练(Overtraining),让模型最终的参数过度适应训练集,加重过拟合。以决策树模型为例,令树的深度越大、叶子节点数越少,模型就越复杂,对训练集的数据分类更精细,会更容易导致模型过拟合。其次在特征工程阶段,“暴力”构造的特征中会包含过多训练集的噪声信息,这类只适合于训练集的冗余特征会降低模型的泛化能力。原创 2024-04-26 00:15:00 · 1202 阅读 · 40 评论 -
多因子模型的因子分组 --主成分分析
主成分分析的思想是借助于正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,即将原随机向量的协方差阵变换成对角形阵, 在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。3、主成分分析中各主成分是按方差大小依次排列顺序的,在分析问题时,可以舍弃一部分主成分,叧取前面方差较大的几个主成分来代表原变量,从而减少了计算工作量。原创 2024-04-24 00:15:00 · 1716 阅读 · 50 评论 -
经典机器学习算法——决策树
树模型是机器学习中最常用的一类模型,包括随机森林、AdaBoost、GBDT(XGBoost和Lightgbm)等,基本原理都是通过集成弱学习器的即式来进一步提升准确度。这里的弱学习器包括线性模型和决策树模型,本期介绍的就是决策树模型(DecisionTree)。决策树属于有监督学习,即可用于回归问题也能解决分类问题,对应的模型称为回归树和分类树。模型的结构采用树图形式展示:其中圆圈表示分裂节点,矩形(右子结点)表示输出结果y。原创 2024-04-22 00:15:00 · 1737 阅读 · 29 评论 -
多因子模型的因子分组-克隆巴赫α系数
等等)中的因子,或者是不系统性风险模型中因子有高相关度的因子,而选取不同的因子组别中的因子,使我们的模型更加稳定。因为多因子模型中的各因子决定了你的投资风格,而相对固定的投资风格是评判你多因子模型的稳定性以及好坏的标准之一,所以因子分组对于我们多因子模型来说非常重要。通过这一方法,我们能够确定我们的多因子模型到底有多少组不同的因子,并且确定每一组里的因子有哪些。系数的计算之后,我们通常通过以下步骤来对因子进行分组:计算因子总体的克隆巴赫。系数也存在它的局限性:当被分组的因子个数较少的时候,克隆巴赫。原创 2024-04-21 00:15:00 · 1472 阅读 · 56 评论 -
特征选择——互信息量
上一期介绍了决策树模型的生成算法,因个人原因,有关决策树的剪枝算法放在下一期文章。本期介绍分类问题中一个常用的指标——互信息。在之前参加的某数据比赛中,由于对数据背后的业务不太了解,所以特征工程环节大多采取了“暴力”提取的方式,最终特征过多直接导致模型存在过拟合问题。所以赛后总结在做特征工程时就应该考虑特征的取舍问题,主要通过特征与因变量Y之间的相关性分析做出判断。衡量单变量的相关性指标有很多,比如Pearson相关系数、Pearson卡方检验、Fisher得分、互信息等。原创 2024-04-15 05:00:00 · 1300 阅读 · 27 评论 -
多因子模型的因子分组-聚类分析
由于类同质性是定义一个类的基础,那么不同因子之间在同一个特征空间相似度的衡量对于聚类步骤是很重要的,由于特征类型和特征标度的多样性,距离度量必须谨慎,它经常依赖于应用,例如,通过定义在特征空间的距离度量来评估不同对象的异质性,很多距离度量都应用在一些不同的领域,一个简单的距离度量,如Euclidean距离,经常被用作反映不同因子间的异质性,一些有关同质性的度量,例如PMC和SMC,能够被用来特征化不同因子的概念同质性。聚类或分组同样是一个很重要的步骤,因子基于不同的方法被分到不同的类中。原创 2024-04-17 00:15:00 · 1251 阅读 · 24 评论 -
IOS 短信拦截插件
在使⽤iOS设备的时候, 我们经常会收到10691065开头的垃圾短信, 如果开了iMessage会更严重, 各种乱七⼋糟的垃圾信息会时不时地收到。从iOS11开始, ⼿机可以⽀持恶短信拦截插件了. 我们可以通过该插件添加⼀些规则通过滤这些不需要的信息.原创 2024-04-15 00:15:00 · 3009 阅读 · 58 评论 -
多因子模型的数据处理
通常我们希望选取因子的分布尽量呈现正态分布,而金融数据通常呈现右偏分布且具有非负性,所以我们通常采用对数转换来处理我们选取的因子数据。数据处理对于我们多因子建模是非常重要的前期准备工作,好的数据对于我们之后的资产分配,组合建模,回测,归因等都是坚实的保障,所以我们通常在前期花多量时间将原始数据处理成我们所需的数据。● 如果数据有严重的异常值及其他数据问题,我们可以对数据先进行排行,然后对排行后的数据强加一个分布,通常是正态分布,有时也用卡方分布,再进行。我们检验的标准是:先计算经处理数据的偏度。原创 2024-04-13 12:33:33 · 1559 阅读 · 84 评论 -
⼿机客户端画K线图流程
绘制⼀屏的数据,在画的时候不会把K线数据全部绘制出来,⼀般在可见的范围内绘制⼏个,⽐如。上步处理后,图表控件跑到原有区域的上⽅去了,需要把它移回原有的区域显⽰,图的时候是以屏幕坐标来处理,所以为了⽅便画图需要把屏幕坐标处理成和。这样就能在当前的可见区域看到绘制好可见的图。⽅向的值就可以了,缩放同理。轴上需要⾃动缩放,即在当前可见的。图矩形的坐标,可以使⽤最右边的点。线图数据,接下来处理的是通过处理。线图能滑动和缩放滑动,在上⾯的。,所以需要在第⼀步中⽤到的。来计算当前绘制的第⼀个点的。原创 2024-04-08 23:44:09 · 1617 阅读 · 90 评论