【C++】AVL树

目录

AVL树的介绍

AVL树的优缺点

全部代码

AVL树的模拟实现

AVLTreeNode的实现

AVLTree的模拟实现

私有成员部分

使用根节点指针作为AVL树的私有成员变量

私有成员函数

公有成员部分

inser接口的实现

旋转图


AVL树的介绍

  • AVL是一种自平衡二叉搜索树,它的名称来自于它的发明者 Adelson-Velsky 和 Landis 的名字缩写。

  • AVL树的性质是,任何一个节点的左右子树高度差不超过1,即AVL树的左右子树高度差的绝对值不超过1。

  • AVL树的插入、删除操作都需要通过旋转来保持平衡。旋转分为两种:左旋和右旋。

  1. 左旋是指将某个节点的右子树提升到该节点的位置,而右子树的左子树则成为该节点的右子树;

  2. 右旋则是将某个节点的左子树提升到该节点的位置,而左子树的右子树则成为该节点的左子树。

  3. 通过旋转操作可以保持树的平衡,使得AVL树的高度始终保持在O(log n)。

AVL树的优缺点

  • AVL树的优点在于,由于它是一棵高度平衡的树,因此查找、插入、删除等操作都具有较好的时间复杂度保证。

  • AVL树的缺点在于,由于维护平衡需要频繁地进行旋转操作,因此在插入、删除等操作时需要付出更高的代价,同时也需要占用更多的内存空间。

全部代码

template<class T>
struct AVLTreeNode
{
public:
 AVLTreeNode(const T& data = T())
  :_cleft(nullptr)
  , _cright(nullptr)
  , _parent(nullptr)
  , _bf(0)
  , _data(data)
 {}
public:
 AVLTreeNode<T>* _cleft;
 AVLTreeNode<T>* _cright;
 AVLTreeNode<T>* _parent;
 T _data;
 int _bf;
};

template<class T>
class AVLTree
{
 typedef AVLTreeNode<T> Node;
public:
 AVLTree()
  :_root(nullptr)
 {}

 bool Insert(const T& data)
 {
  if (_root == nullptr)
  {
   _root = new Node(data);
   return true;
  }
  Node* cur = _root;
  Node* parent = nullptr;

  while (cur != nullptr)
  {
   if (cur->_data == data)
    return false;
   //寻找插入位置,parent记录父亲节点
   parent = cur;
   if (data > cur->_data)
    cur = parent->_cright;
   else if (data < cur->_data)
    cur = parent->_cleft;
  }

  //插入逻辑

  if (data > parent->_data)
  {
   parent->_cright = new Node(data);
   cur = parent->_cright;
  }
  else if (data < parent->_data)
  {
   parent->_cleft = new Node(data);
   cur = parent->_cleft;
  }
  cur->_parent = parent;

  //判断是否需要旋转
  while (parent)
  {
   //判断插入后对平衡因子的影响
   if (cur == parent->_cleft)
    parent->_bf--;
   else
    parent->_bf++;

   //开始调整平衡因子
   //当插入后parent为0,代表左右子树都有,无需调整
   //当插入后parent为1 -1 代表着高度改变,需要一直调整到根
   //当插入后parent为2 -2 代表着失衡,需要旋转
   if (parent->_bf == 0)
    break;
   else if (abs(parent->_bf) == 1)
   {
    cur = parent;
    parent = cur->_parent;
   }
   else if (abs(parent->_bf) == 2)
   {
    //等于2代表右子树更高
    if (parent->_bf == 2)
    {
     Node* subr = parent->_cright;
     if (subr->_bf == 1)//插在右子树的右的树上
     {
      _RotateL(parent);
     }
     else if (subr->_bf == -1)//插在右子树的左树上
     {
      _RotateRL(parent);
     }
    }
    else if (parent->_bf == -2)
    {
     Node* subl = parent->_cleft;
     if (subl->_bf == -1)
     {
      _RotateR(parent);
     }
     else if (subl->_bf == 1)
     {
      _RotateLR(parent);
     }
    }
    break;
   }
  }
  return true;
 }

 void inprint()
 {
  _inprint(_root);
 }

 void prevprint()
 {
  _prevprint(_root);
 }

 int Height()
 {
  return _Height(_root);
 }

 bool IsBalanceTree()
 {
  return _IsBalanceTree(_root);
 }
private:

 int _Height(Node* root)
 {
  if (root == nullptr)
   return 0;

  int leftHigh = _Height(root->_cleft);
  int rightHigh = _Height(root->_cright);
  int max1 = max(leftHigh, rightHigh);

  return 1 + max1;
 }
 void _inprint(Node* root)
 {
  if (root == nullptr)
   return;

  _inprint(root->_cleft);
  cout << root->_data << ' ';
  _inprint(root->_cright);
 }

 void _prevprint(Node* root)
 {
  if (root == nullptr)
   return;
  cout << root->_data << ' ';
  _prevprint(root->_cleft);
  _prevprint(root->_cright);
 }

 void _RotateL(Node* parent)
 {
  Node* subR = parent->_cright;
  Node* subRL = subR->_cleft;

  parent->_cright = subRL;
  if (subRL)//防止右子树的左树为空
   subRL->_parent = parent;

  subR->_cleft = parent;

  Node* pparent = parent->_parent;
  parent->_parent = subR;

  subR->_parent = pparent;
  if (pparent == nullptr)
   _root = subR;
  else
  {
   if (parent == pparent->_cleft)
    pparent->_cleft = subR;
   else
    pparent->_cright = subR;
  }
  subR->_bf = 0;
  parent->_bf = 0;
 }

 void _RotateR(Node* parent)
 {
  Node* subL = parent->_cleft;
  Node* subLR = subL->_cright;

  parent->_cleft = subLR;
  if (subLR)
   subLR->_parent = parent;

  subL->_cright = parent;

  //parent可能是一颗子树,先保存其双亲节点
  Node* pparent = parent->_parent;

  parent->_parent = subL;
  subL->_parent = pparent;
  if (pparent == nullptr)//parent为根节点情况
   _root = subL;
  else
  {
   if (parent == pparent->_cleft)
    pparent->_cleft = subL;
   else
    pparent->_cright = subL;
  }
  parent->_bf = subL->_bf = 0;
 }

 //右左双旋
 void _RotateRL(Node* parent)
 {
  Node* subR = parent->_cright;
  Node* subRL = subR->_cleft;

  int tmp = subRL->_bf;

  _RotateR(parent->_cright);
  _RotateL(parent);

  if (tmp == 0)
  {
   // subRL自己就是新增
   parent->_bf = subR->_bf = subRL->_bf = 0;
  }
  else if (tmp == -1)
  {
   // subRL的左子树新增
   parent->_bf = 0;
   subRL->_bf = 0;
   subR->_bf = 1;
  }
  else if (tmp == 1)
  {
   // subRL的右子树新增
   parent->_bf = -1;
   subRL->_bf = 0;
   subR->_bf = 0;
  }
  else
  {
   assert(false);
  }
 }

 void _RotateLR(Node* parent)
 {
  Node* subL = parent->_cleft;
  Node* subLR = subL->_cright;

  int tmp = subLR->_bf;

  _RotateL(parent->_cleft);
  _RotateR(parent);

  if (tmp == 0)
  {
   // subRL自己就是新增
   parent->_bf = subL->_bf = subLR->_bf = 0;
  }
  else if (tmp == -1)
  {
   // subRL的左子树新增
   parent->_bf = 0;
   subLR->_bf = 0;
   subL->_bf = 1;
  }
  else if (tmp == 1)
  {
   // subRL的右子树新增
   parent->_bf = -1;
   subLR->_bf = 0;
   subL->_bf = 0;
  }
  else
  {
   assert(false);
  }
 }

 bool _IsBalanceTree(Node* root)
 {
  if (root == nullptr)
   return true;

  int leftHeight = _Height(root->_cleft);
  int rightHeight = _Height(root->_cright);
  int sub = rightHeight - leftHeight;
  if (sub != root->_bf || sub > 1)
   return false;

  return _IsBalanceTree(root->_cleft) && _IsBalanceTree(root->_cright);
 }
private:
 Node* _root;
};

AVL树的模拟实现

AVLTreeNode的实现

  • AVLTreeNode结构定义了AVL树的节点,每个节点包含了左子节点、右子节点、父节点的指针,以及节点的数据和平衡因子。通过这些成员变量,可以构建AVL树的数据结构。

  • 成员变量:

  1. _cleft:指向左子节点的指针。

  2. _cright:指向右子节点的指针。

  3. _parent:指向父节点的指针。

  4. _data:存储节点数据的变量,类型为T。

  5. _bf:用于记录平衡因子的变量,表示左右子树高度差。

  • 构造函数:AVLTreeNode(const T& data = T()):构造函数,可以传入一个参数data,默认值为T类型的默认值。在构造节点时,会初始化成员变量,并将传入的data赋值给_data。

template<class T>
struct AVLTreeNode
{
public:
 AVLTreeNode(const T& data = T())
  :_cleft(nullptr)
  , _cright(nullptr)
  , _parent(nullptr)
  , _bf(0)
  , _data(data)
 {}
public:
 AVLTreeNode<T>* _cleft;
 AVLTreeNode<T>* _cright;
 AVLTreeNode<T>* _parent;
 T _data;
 int _bf;
};

AVLTree的模拟实现

  • 仅实现了插入、前中序遍历、测量高度等几个功能

template<class T>
class AVLTree
{
 typedef AVLTreeNode<T> Node;
public:
 AVLTree()
  :_root(nullptr)
 {}

 bool Insert(const T& data)
 {
  if (_root == nullptr)
  {
   _root = new Node(data);
   return true;
  }
  Node* cur = _root;
  Node* parent = nullptr;

  while (cur != nullptr)
  {
   if (cur->_data == data)
    return false;
   //寻找插入位置,parent记录父亲节点
   parent = cur;
   if (data > cur->_data)
    cur = parent->_cright;
   else if (data < cur->_data)
    cur = parent->_cleft;
  }

  //插入逻辑

  if (data > parent->_data)
  {
   parent->_cright = new Node(data);
   cur = parent->_cright;
  }
  else if (data < parent->_data)
  {
   parent->_cleft = new Node(data);
   cur = parent->_cleft;
  }
  cur->_parent = parent;

  //判断是否需要旋转
  while (parent)
  {
   //判断插入后对平衡因子的影响
   if (cur == parent->_cleft)
    parent->_bf--;
   else
    parent->_bf++;

   //开始调整平衡因子
   //当插入后parent为0,代表左右子树都有,无需调整
   //当插入后parent为1 -1 代表着高度改变,需要一直调整到根
   //当插入后parent为2 -2 代表着失衡,需要旋转
   if (parent->_bf == 0)
    break;
   else if (abs(parent->_bf) == 1)
   {
    cur = parent;
    parent = cur->_parent;
   }
   else if (abs(parent->_bf) == 2)
   {
    //等于2代表右子树更高
    if (parent->_bf == 2)
    {
     Node* subr = parent->_cright;
     if (subr->_bf == 1)//插在右子树的右的树上
     {
      _RotateL(parent);
     }
     else if (subr->_bf == -1)//插在右子树的左树上
     {
      _RotateRL(parent);
     }
    }
    else if (parent->_bf == -2)
    {
     Node* subl = parent->_cleft;
     if (subl->_bf == -1)
     {
      _RotateR(parent);
     }
     else if (subl->_bf == 1)
     {
      _RotateLR(parent);
     }
    }
    break;
   }
  }
  return true;
 }

 void inprint()
 {
  _inprint(_root);
 }

 void prevprint()
 {
  _prevprint(_root);
 }

 int Height()
 {
  return _Height(_root);
 }

 bool IsBalanceTree()
 {
  return _IsBalanceTree(_root);
 }
private:

 int _Height(Node* root)
 {
  if (root == nullptr)
   return 0;

  int leftHigh = _Height(root->_cleft);
  int rightHigh = _Height(root->_cright);
  int max1 = max(leftHigh, rightHigh);

  return 1 + max1;
 }
 void _inprint(Node* root)
 {
  if (root == nullptr)
   return;

  _inprint(root->_cleft);
  cout << root->_data << ' ';
  _inprint(root->_cright);
 }

 void _prevprint(Node* root)
 {
  if (root == nullptr)
   return;
  cout << root->_data << ' ';
  _prevprint(root->_cleft);
  _prevprint(root->_cright);
 }

 void _RotateL(Node* parent)
 {
  Node* subR = parent->_cright;
  Node* subRL = subR->_cleft;

  parent->_cright = subRL;
  if (subRL)//防止右子树的左树为空
   subRL->_parent = parent;

  subR->_cleft = parent;

  Node* pparent = parent->_parent;
  parent->_parent = subR;

  subR->_parent = pparent;
  if (pparent == nullptr)
   _root = subR;
  else
  {
   if (parent == pparent->_cleft)
    pparent->_cleft = subR;
   else
    pparent->_cright = subR;
  }
  subR->_bf = 0;
  parent->_bf = 0;
 }

 void _RotateR(Node* parent)
 {
  Node* subL = parent->_cleft;
  Node* subLR = subL->_cright;

  parent->_cleft = subLR;
  if (subLR)
   subLR->_parent = parent;

  subL->_cright = parent;

  //parent可能是一颗子树,先保存其双亲节点
  Node* pparent = parent->_parent;

  parent->_parent = subL;
  subL->_parent = pparent;
  if (pparent == nullptr)//parent为根节点情况
   _root = subL;
  else
  {
   if (parent == pparent->_cleft)
    pparent->_cleft = subL;
   else
    pparent->_cright = subL;
  }
  parent->_bf = subL->_bf = 0;
 }

 //右左双旋
 void _RotateRL(Node* parent)
 {
  Node* subR = parent->_cright;
  Node* subRL = subR->_cleft;

  int tmp = subRL->_bf;

  _RotateR(parent->_cright);
  _RotateL(parent);

  if (tmp == 0)
  {
   // subRL自己就是新增
   parent->_bf = subR->_bf = subRL->_bf = 0;
  }
  else if (tmp == -1)
  {
   // subRL的左子树新增
   parent->_bf = 0;
   subRL->_bf = 0;
   subR->_bf = 1;
  }
  else if (tmp == 1)
  {
   // subRL的右子树新增
   parent->_bf = -1;
   subRL->_bf = 0;
   subR->_bf = 0;
  }
  else
  {
   assert(false);
  }
 }

 void _RotateLR(Node* parent)
 {
  Node* subL = parent->_cleft;
  Node* subLR = subL->_cright;

  int tmp = subLR->_bf;

  _RotateL(parent->_cleft);
  _RotateR(parent);

  if (tmp == 0)
  {
   // subRL自己就是新增
   parent->_bf = subL->_bf = subLR->_bf = 0;
  }
  else if (tmp == -1)
  {
   // subRL的左子树新增
   parent->_bf = 0;
   subLR->_bf = 0;
   subL->_bf = 1;
  }
  else if (tmp == 1)
  {
   // subRL的右子树新增
   parent->_bf = -1;
   subLR->_bf = 0;
   subL->_bf = 0;
  }
  else
  {
   assert(false);
  }
 }

 bool _IsBalanceTree(Node* root)
 {
  if (root == nullptr)
   return true;

  int leftHeight = _Height(root->_cleft);
  int rightHeight = _Height(root->_cright);
  int sub = rightHeight - leftHeight;
  if (sub != root->_bf || sub > 1)
   return false;

  return _IsBalanceTree(root->_cleft) && _IsBalanceTree(root->_cright);
 }
private:
 Node* _root;
};

私有成员部分

使用根节点指针作为AVL树的私有成员变量
private:
 Node* _root;
私有成员函数
  • 全是辅助性接口

  • 旋转操作有四种:左单旋、右单旋、左右双旋、右左双旋,都是insert接口的辅助函数

  • 测量高度、判断是否为AVL数、前序和中序遍历接口是为了实现递归检测而写的辅助函数

  1. _Height(Node* root):计算以root为根节点的子树的高度。递归地计算左子树和右子树的高度,并返回较大值加1作为当前节点的高度。

  2. _inprint(Node* root):中序遍历打印以root为根节点的子树。先递归地打印左子树,然后打印当前节点,最后递归地打印右子树。

  3. _prevprint(Node* root):先序遍历打印以root为根节点的子树。先打印当前节点,然后递归地打印左子树,最后递归地打印右子树。

  4. _RotateL(Node* parent):左旋操作,将parent节点向左旋转。具体操作为将parent的右子节点subR提升为根节点,subR的左子节点subRL成为parent的右子节点,parent成为subR的左子节点。

  5. _RotateR(Node* parent):右旋操作,将parent节点向右旋转。具体操作为将parent的左子节点subL提升为根节点,subL的右子节点subLR成为parent的左子节点,parent成为subL的右子节点。

  6. _RotateRL(Node* parent):右左双旋操作,先对parent的右子节点进行右旋操作,再对parent进行左旋操作。

  7. _RotateLR(Node* parent):左右双旋操作,先对parent的左子节点进行左旋操作,再对parent进行右旋操作。

  8. _IsBalanceTree(Node* root):判断以root为根节点的子树是否为平衡二叉树。递归地判断左子树和右子树的高度差是否符合平衡条件,并且判断每个节点的平衡因子是否与高度差一致。

private:

 int _Height(Node* root)
 {
  if (root == nullptr)
   return 0;

  int leftHigh = _Height(root->_cleft);
  int rightHigh = _Height(root->_cright);
  int max1 = max(leftHigh, rightHigh);

  return 1 + max1;
 }
 void _inprint(Node* root)
 {
  if (root == nullptr)
   return;

  _inprint(root->_cleft);
  cout << root->_data << ' ';
  _inprint(root->_cright);
 }

 void _prevprint(Node* root)
 {
  if (root == nullptr)
   return;
  cout << root->_data << ' ';
  _prevprint(root->_cleft);
  _prevprint(root->_cright);
 }

 void _RotateL(Node* parent)
 {
  Node* subR = parent->_cright;
  Node* subRL = subR->_cleft;

  parent->_cright = subRL;
  if (subRL)//防止右子树的左树为空
   subRL->_parent = parent;

  subR->_cleft = parent;

  Node* pparent = parent->_parent;
  parent->_parent = subR;

  subR->_parent = pparent;
  if (pparent == nullptr)
   _root = subR;
  else
  {
   if (parent == pparent->_cleft)
    pparent->_cleft = subR;
   else
    pparent->_cright = subR;
  }
  subR->_bf = 0;
  parent->_bf = 0;
 }

 void _RotateR(Node* parent)
 {
  Node* subL = parent->_cleft;
  Node* subLR = subL->_cright;

  parent->_cleft = subLR;
  if (subLR)
   subLR->_parent = parent;

  subL->_cright = parent;

  //parent可能是一颗子树,先保存其双亲节点
  Node* pparent = parent->_parent;

  parent->_parent = subL;
  subL->_parent = pparent;
  if (pparent == nullptr)//parent为根节点情况
   _root = subL;
  else
  {
   if (parent == pparent->_cleft)
    pparent->_cleft = subL;
   else
    pparent->_cright = subL;
  }
  parent->_bf = subL->_bf = 0;
 }

 //右左双旋
 void _RotateRL(Node* parent)
 {
  Node* subR = parent->_cright;
  Node* subRL = subR->_cleft;

  int tmp = subRL->_bf;

  _RotateR(parent->_cright);
  _RotateL(parent);

  if (tmp == 0)
  {
   // subRL自己就是新增
   parent->_bf = subR->_bf = subRL->_bf = 0;
  }
  else if (tmp == -1)
  {
   // subRL的左子树新增
   parent->_bf = 0;
   subRL->_bf = 0;
   subR->_bf = 1;
  }
  else if (tmp == 1)
  {
   // subRL的右子树新增
   parent->_bf = -1;
   subRL->_bf = 0;
   subR->_bf = 0;
  }
  else
  {
   assert(false);
  }
 }

 void _RotateLR(Node* parent)
 {
  Node* subL = parent->_cleft;
  Node* subLR = subL->_cright;

  int tmp = subLR->_bf;

  _RotateL(parent->_cleft);
  _RotateR(parent);

  if (tmp == 0)
  {
   // subRL自己就是新增
   parent->_bf = subL->_bf = subLR->_bf = 0;
  }
  else if (tmp == -1)
  {
   // subRL的左子树新增
   parent->_bf = 0;
   subLR->_bf = 0;
   subL->_bf = 1;
  }
  else if (tmp == 1)
  {
   // subRL的右子树新增
   parent->_bf = -1;
   subLR->_bf = 0;
   subL->_bf = 0;
  }
  else
  {
   assert(false);
  }
 }

 bool _IsBalanceTree(Node* root)
 {
  if (root == nullptr)
   return true;

  int leftHeight = _Height(root->_cleft);
  int rightHeight = _Height(root->_cright);
  int sub = rightHeight - leftHeight;
  if (sub != root->_bf || sub > 1)
   return false;

  return _IsBalanceTree(root->_cleft) && _IsBalanceTree(root->_cright);
 }

公有成员部分

  1. AVLTree构造函数 AVLTree类的默认构造函数,初始化根节点为nullptr。

  2. Insert函数 AVLTree的插入函数,将一个新节点插入到树中。

  3. inprint函数 对树进行中序遍历打印。

  4. prevprint函数 对树进行前序遍历打印。

  5. Height函数 计算树的高度,即从根节点到最深叶子节点的路径长度。

  6. IsBalanceTree函数 判断是否为AVL树。

public:
 AVLTree()
  :_root(nullptr)
 {}

 bool Insert(const T& data)
 {
  if (_root == nullptr)
  {
   _root = new Node(data);
   return true;
  }
  Node* cur = _root;
  Node* parent = nullptr;

  while (cur != nullptr)
  {
   if (cur->_data == data)
    return false;
   //寻找插入位置,parent记录父亲节点
   parent = cur;
   if (data > cur->_data)
    cur = parent->_cright;
   else if (data < cur->_data)
    cur = parent->_cleft;
  }

  //插入逻辑

  if (data > parent->_data)
  {
   parent->_cright = new Node(data);
   cur = parent->_cright;
  }
  else if (data < parent->_data)
  {
   parent->_cleft = new Node(data);
   cur = parent->_cleft;
  }
  cur->_parent = parent;

  //判断是否需要旋转
  while (parent)
  {
   //判断插入后对平衡因子的影响
   if (cur == parent->_cleft)
    parent->_bf--;
   else
    parent->_bf++;

   //开始调整平衡因子
   //当插入后parent为0,代表左右子树都有,无需调整
   //当插入后parent为1 -1 代表着高度改变,需要一直调整到根
   //当插入后parent为2 -2 代表着失衡,需要旋转
   if (parent->_bf == 0)
    break;
   else if (abs(parent->_bf) == 1)
   {
    cur = parent;
    parent = cur->_parent;
   }
   else if (abs(parent->_bf) == 2)
   {
    //等于2代表右子树更高
    if (parent->_bf == 2)
    {
     Node* subr = parent->_cright;
     if (subr->_bf == 1)//插在右子树的右的树上
     {
      _RotateL(parent);
     }
     else if (subr->_bf == -1)//插在右子树的左树上
     {
      _RotateRL(parent);
     }
    }
    else if (parent->_bf == -2)
    {
     Node* subl = parent->_cleft;
     if (subl->_bf == -1)
     {
      _RotateR(parent);
     }
     else if (subl->_bf == 1)
     {
      _RotateLR(parent);
     }
    }
    break;
   }
  }
  return true;
 }

 void inprint()
 {
  _inprint(_root);
 }

 void prevprint()
 {
  _prevprint(_root);
 }

 int Height()
 {
  return _Height(_root);
 }

 bool IsBalanceTree()
 {
  return _IsBalanceTree(_root);
 }
inser接口的实现
  • 首先判断根节点是否为空,如果为空则直接插入并返回true。

  • 如果根节点不为空,则从根节点开始查找要插入的位置,同时记录每个节点的父亲节点。

  • 如果找到了相同的数据,则返回false,表示插入失败。

  • 如果找到了合适的位置,则在该位置插入新节点,并将该节点的父亲节点指向记录的父亲节点。

  • 在插入后需要判断是否需要旋转来维持平衡性,因此需要进行平衡因子的调整。对于新增加的节点cur,如果它插在parent的左边,则parent的平衡因子减1,否则增1。

  • 如果parent的平衡因子为0,则代表左右子树都已经有了,无需调整,退出循环;如果parent的平衡因子为1或-1,则代表高度改变,需要继续向上调整;如果parent的平衡因子为2或-2,则代表失衡,需要进行旋转操作。

  • 进行旋转操作前,需要判断是进行左旋还是右旋,还是进行左右双旋或右左双旋。具体操作可以参考代码中的注释。

  • 最后返回true表示插入成功。

bool Insert(const T& data)
 {
  if (_root == nullptr)
  {
   _root = new Node(data);
   return true;
  }
  Node* cur = _root;
  Node* parent = nullptr;

  while (cur != nullptr)
  {
   if (cur->_data == data)
    return false;
   //寻找插入位置,parent记录父亲节点
   parent = cur;
   if (data > cur->_data)
    cur = parent->_cright;
   else if (data < cur->_data)
    cur = parent->_cleft;
  }

  //插入逻辑

  if (data > parent->_data)
  {
   parent->_cright = new Node(data);
   cur = parent->_cright;
  }
  else if (data < parent->_data)
  {
   parent->_cleft = new Node(data);
   cur = parent->_cleft;
  }
  cur->_parent = parent;

  //判断是否需要旋转
  while (parent)
  {
   //判断插入后对平衡因子的影响
   if (cur == parent->_cleft)
    parent->_bf--;
   else
    parent->_bf++;

   //开始调整平衡因子
   //当插入后parent为0,代表左右子树都有,无需调整
   //当插入后parent为1 -1 代表着高度改变,需要一直调整到根
   //当插入后parent为2 -2 代表着失衡,需要旋转
   if (parent->_bf == 0)
    break;
   else if (abs(parent->_bf) == 1)
   {
    cur = parent;
    parent = cur->_parent;
   }
   else if (abs(parent->_bf) == 2)
   {
    //等于2代表右子树更高
    if (parent->_bf == 2)
    {
     Node* subr = parent->_cright;
     if (subr->_bf == 1)//插在右子树的右的树上
     {
      _RotateL(parent);
     }
     else if (subr->_bf == -1)//插在右子树的左树上
     {
      _RotateRL(parent);
     }
    }
    else if (parent->_bf == -2)
    {
     Node* subl = parent->_cleft;
     if (subl->_bf == -1)
     {
      _RotateR(parent);
     }
     else if (subl->_bf == 1)
     {
      _RotateLR(parent);
     }
    }
    break;
   }
  }
  return true;
 }

旋转图

  • 右单旋 新节点插入较高左子树的左侧

  • 左单旋 新节点插入较高右子树的右侧

  • 左右双旋 新节点插入较高左子树的右侧

  • 右左双旋 新节点插入较高右子树的左侧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值